ADIOS 1.3 User’s Manual

July 2011

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE)
Information Bridge:

Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following
source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)

TDD: 703-487-4639

Fax: 703-605-6900

E-mail: info@ntis.fedworld.gov

Web site: http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE)
representatives, and International Nuclear Information System (INIS) representatives from the following source:

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: 865-576-8401

Fax: 865-576-5728

E-mail: reports @adonis.osti.gov

Web site: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

ADIOS 1.3 USER’S MANUAL

Prepared for the
Office of Science
U.S. Department of Energy

S. Hodson, S. Klasky, Q. Liu, J. Lofstead, N. Podhorszki, F. Zheng, M. Wollf,
T. Kordenbrock, H. Abbasi, N. Samatova

July 2011

Prepared by

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6070
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

Contents

1 INtroduction.......mmmr s —————— 1
L1 GOQILS crerereeeeer e s s R R RS R RS e e 1
1.2 WHRAL IS ADIOS .o et sess s s e s s s s e 1
1.3 The Basic ADIOS Group CONCEPTL....mereemeesrererssersessesssessesssesssesssssssesssssssesssssssesssssssssssees 1
1.4 Other Interesting Features of ADIOS.......o e ssessesssesees 1
1.5 Future ADIOS 2.0 GOAlS .. sesssesssessse s ssessessseessssssssssessssssse s sssssssssesaes 2

2 InsStallation ... —————————— 3
2.1 ODLaiNing ADIOS.... e ss s s s s 3
2.2 QUICK INSTAIlATION ...ttt st s s bbb s st 3

20720 SR 19 14 16D o LT) PSPPI 3
Y 05 - | 1 TP 3
05 TN 1 0] o To o {0 ol Y U o PP 4
2.3 ADIOS DEPENAEIICIES .urrruiruerrereereessersssessessesssessesssssssesssssesssesssesssssssasssessssssse s ssssssasssesssssssesss 4
2.3.1 Mini-XML parser (TEQUITEA) ...ererreresessereesseeseessesssesssesssesssssssesssssssessssssssssesssssesss 4
2.3.2 MPI and MPI-10 (TeQUITEA) .cvvuureerermremrerrereesereesseesseessessesssesssesssssssessssssessssssssssessssssesss 4
2.3.3 Fortran90 compiler (OPtioNal) ... sssssessessssessesssssssenns 4
2.3.4 Serial NetCDF-3 (0PtiONaAl) .oceeeureerereesserserresereer s sesssenssesssesssssssessssssesesssssssesssssssenss 4
2.3.5 Serial HDF5 (OPtioNal) e seessesssesssesssesssesssssssesssssssessssssssssesssssssesss 5
2.3.6 PHDF5 (OPtIONAL)uieiecrccireereesrenseessesseessessesssssssesessseesesssessssssessssssss e sssssssessssssssssessssssseses 5
2.3.7 NetCDF-4 Paralle] ... sssssessssssssssesssssssesss 5
2.3.8 Read-only installation ... sssssesesssssssessssssenns 5
2.4 FUll INStAllatioN .. ieceeesereereceseesees s ssesssees s sesssesssessss s sesssesssssssenes 5
2.5 Compiling applications using ADIOS ... sssssesssssssenns 6

3 ADIOS Write API ... s ssesssssssssases 7

70 B AT 5 LN o B D T=E15 o 01 () o 7
700 00 S 01 oo 1o 10 (i o) o 0PSO 7
3.1.2 ADIOS-required fUNCLIONS ... reeseesseesersreserese s sesssess s sssssssesssssssesssssssssesaes 7
3.1.3 NoNblocKing fUNCIONS. ... ssss s ssssseees 11
1 700 S 01 0 1S5 1310 (ot (o) o 000 PP 11
3.1.5 Create a first ADIOS PrOZIramcoereeeemerreresrssereesseesesssessssssessse e ssssssessssssssssenes 12

4 ADIOS No-XML Write API........cirnirninrnennesnansisenans 13
4.1 No-XML Write API DeSCriptioN....isssssssssssssssssssssssssssssssssssss 13

4.1.1 adioS_iNIt NOXIM bbb bbbt 13
4.1.2 adios_alloCate_DUTET ... bbb b sss s bnas 14

Note that, as opposed to C AP], the Fortran API doesn’t have
adios_buffer_alloc_when argument as it supports ADIOS_BUFFER_ALLOC_NOW only

as Of the 1ateSt ADIOS VEISION. ... s s bbb s bnes 14
4.1.3 adioS_deClare_SrOUp ..o ceeieererseerersesses s sessssessessssssse s sess s sesssssssesssssssesasesases 14
4.1.4 AdioS_defiNE_VaAT bbb bbb b n bt 15
4.1.5 adios_define_attriDULE ... bbb s b 15
4.1.6 adios_seleCct_MEtNOd ... b 16

4.2 Create a n0-XML ADIOS Program ... 17

5 XML Config File Formatccoccvcmnmnmsnsnnsmnmssmssssessesssssnnns 18

ii

D1 OVEIVIEW weesesesesesssssssesssssss s ssss s s s e st s s st ss st st st s st st sesssssssesessssssssssssasssssssssessssasssssssssasssssnsasassnnns 18

LT 16 § (0TS o3 401 U)oL PP 19
5.2.1 DEClaration ccececesessseseessessesssessessesssssssssssssssssssssssssessssssssssssssssssssssssssssssssessssssssesssssssssssns 19
5.2.2 VaTIADIES ettt ss s s s s s s s 20
5.2.3 ALLTIDULES oottt s s e e 21
TN T €1 Ll] o TP 22
5.2.5 GlODAL AITAYS ccuirureerereereerseesseessesssesssssssesssssssssse s sssssesssesssesssesssssssessse s ssssssssasssssssseees 22
5.2.6 TIME-INAEX cuiuirerirriereererseissesesssssseses s s s sssssss s sssssss s ssss s s nsssssans 22
ST AN D 1ol - - o) o O TSP 23
5.2.8 MethOds LISt e ssss s sess st sessssss s s sssssenes 24

5.3 BUuffer SPeCifiCation ..o sessess s sssessss s sssssenes 24
5.3.1 DEClaration ccececereeseeeessessssssessesssssssss s ssssssesssssssssessans 24

5.4 Enabling HiStOGIAIM ..o ssessesssesssssssesssssssesssssssssssesasssssessssssssssenes 24
541 DEClaration ccecesceseeseiseessessssssessessssssssssssssssssssssssssssessns 25

5.5 An EXample XML fil€... s sessssssesssssssesssesssssssessssssssssssssssseses 25

6 Transport methods........cccmmmmmm—————— 27

6.1 SyNchronous METNOAS ... s ns s 27
6.1.1 INULL ooteeeeeueerneeseeesseessseessessseesssessssssssessssessssass s ssses s sssss s s esssssssessssessssass s s sasessasssssenens 27
6.1.2 POSIXK eeeeeeeeteees ettt ssse e ssss s es s s s bR 27
6.1.3 MPI ettt st s s s R R R R 27
6.1.4 MPI_LUSTRE .ot eeereetrseeieetseesssesessssessssess s sssss s ssss st s ssses s ss s s ssssssasssssesens 29
6.1.5 MPI_AMR oottt ssss s es st ss bbb s R 29
6.1.6 PHDF S ..ottt es s s b s bbb bbb 30
6.1.7 NEECDFA ...ttt ses st b s bbb b 31
6.1.8 Other METNOAS ..ot ns s 32

6.2 Asynchronous Methods ... s 32
6.2.1 Network Scalable Service Interface (NSSI)....comemrremrnernernereeeseesseessessessseenns 32
Lo D F- L v U I) o 35
6.2.3 Decoupled and Asynchronous Remote Transfers (DART)c.couuereerneerreemreenneenn. 36

6.3 Other research methods at ORNL......ccoeenecnee s sesssesssenans 38
6.3.1 MPI-CIO couieeeereeeeeereeessees e ssss s sssessssess s ss s s s s 38
6.3.2 MPI-ATD ottt ssss s ss st s s s bR 38

7 ADIOS Read APL......irrninnsnsnssesssssnssssssssssssssssssssssssasans 40

2% SN 04U (oY 10 (ol (o o OO 40

7.2 Read C APl deSCIIPLION .o ieereerreeseessesseessessesssessesssss st sesssssssesssssssessss s sasssssessssssssssenes 41
7.2.1 adioS_errmsg / @diOS_EITIO w.ueeeeereerermeesersersssseessesssesssesssessssssessse s ssssssessssssssseses 41
A 2 o Uo R {0} o 1) o VO PP 41
7.2.3 AAI0S_fClOSEuu e b bbb 42
7.2.4 adios_gopen / adioS_gOPen_DYid ... sssesesssesesssssssenes 42
A% T o § (o I ol U0 1] PP 43
7.2.6 adios_inq_var / adios_ing_var_DYid ... 43
A - o (o TR § =TT 2= U 1 1 0 N 44
7.2.8 adios_read_var / adios_read_var_byid........ssseess 44
7.2.9 adios_get_attr / adios_get_attr_Dyid ... 45
7.2.10 adioS_tyPe_tO_STIING. . ccereereeererseessersserssessersss s sess s sesssssssessse s ssssssssssenes 45
7211 QdiOS_LYPO_SIZE coeuirueeercerreesseessees e ses e st s s s 45

7.3 Time series analysis API DeSCription: ... sessessssesersssseseesssesenes 45
7.3.1 adios_stat_cor / adios_STat_COV ...ninsenensissessessssssessessssssssssssessssssssssssssssssssssns 46

iv

7.4 Read Fortran APl deSCriPLiON ... enereeerserssssseneesseesssssesssesssesssesssssssesssssssessssssssseees 46

7.5 Compiling and linking appliCations ... neeseessesssesssesssesseessesssssesessssesseees 49

8 BP file format.......ccccniiininnn—————- 49
£S 700 SN 05103/ 76 11 (ot o) o 000U PP 49
8.2 FOOTOT i 50
0 Y= 4 o) L 50
8.2.2 OffSetS Of INAICES .u.vvuerereerreerrees et sssss e sess s sesse s 51
8.2.3 INAICES oo 51

8.3 ProCESS GIOUPS .t sssss s ss s st s 53

LS T8 T S o) =Y Vo U)o PP 54
8.3.2 VTS LISt 55
8.3.3 ALIIDULES LISt 55

02 T 01 01 L 57
15 200 R U § (o 300) L 0T 57
0.2 DD R RS 57

LS J0C T o 016 L oo} 1P 59
10 CONVETITErsSoccvirimmsemssmsssssnss s ssss s ssasssasssnsssnnns 61
T0. 1 DPZRG ettt s bbb AR AR 61
00 1 0¥/ U PP 61
020 N o 0127] 3 PP 61
10.4 Paralle]l CONVETItEr TOOLS ..o seesssssesssesssessss s ssssssssseees 62
11 Group read/write ProcCess.......ummmmmmmmmm 63
11.1 GWIIte/Bread/TEAd .t sees s 63
11.2 Add conditional EXPIreSSION ... reeseesrerersersersss s sessesssesssess s s ssssssssssenes 64
11.3 Dependency in MaKefile ... sesssesssesssssssssssesssssesssssseseees 64
12 CProgramming with ADIOS........ccocvinmsmnmsmsensnnsnssnnsnnns 65
12.1 NON-ADIOS Program... s ssssssssssssssens 65
12.2 Construct an XML File ... sessssss s sssesssssssssssessssssessssssssssenes 66
12.3 Generate .Ch file (S) . sees s sesenes 66
12.4 POSIX transport method (P writers, P subfiles + 1 metadata file)cc.coueenueuneee. 67
12.5 MPI-IO transport method (P writers, 1 file) ... 68
12.6 Reading data from the same number Of ProCeSSOrScovrerersrenserseeesserseesseessenns 69
12.7 Writing to Shared Files (P writers, N files)ccceeeneeeeneeseeseesereeeseeseeeseesenns 70
12.8 GlODAI ATTAYS weorreerereeesrereerseseesseessessesssessssessessss s sse st sesssssssessss s ssssssse s ssssssssssenes 72
12.8.1 MPI-IO transport method (P writers, 1 file) ..o 73
12.8.2 POSIX transport method (P writers, P Subfiles + 1 Metadata file)................. 74

12,9 Writing Time-Index into @ Variableeeesseesessseseseseseseesseeseens 74
12.10 ReadiNg STAtISTICS ovuirerrereerreersemsees s ssessesssssse s sesssss s s s sssssssenes 76
13 Developer Manual.........ccocremismnsmnsmmsmssmssnnssssssesssssssssssasses 78
13.1 Create New TranSport MEthOds ... sesssesssesssessssessessssssesessssssseees 78
13.1.1 Add the new method macros in adios_transport_hooks.h........ncnes 78
13.1.2 Create adioS_aDC.Cu s es s bbb s b s nans 79
13.1.3 A walk-through eXample......eec s sseseees 80

13.2 Profiling the Application and ADIOS........ e seesssessenes 85

13.2.1 Use profiling API in SOUICE COAE.....mmnerrrrerneerreessees s ssssesesssessesesssssseees 86

R T2 DI 05 b= o) oXc) ol 11 0] - PP 89

14 APPENAiX .ovcvsmssnnsersemssmssnsssssnssasssnssssssssasssssssssssssssassssssssssssassns 90
14.1 Datatypes used in the ADIOS XML fil€ ..o seesessseseseseseseesssesenes 90
14.2 ADIOS APIS LiST.iuuceereeemeerreeesseesseessesssesssessssssssssssessssesssssssssssssesssssssssssssessssessssassssssssessssessassssans 90
14.3 An Example on Writing Sub-blocks using No-XML APIS......cccoorrmmmmerneeenserneeeneessenns 91

vi

Figures

Figure 1. ADIOS programming eXample......cuereeessssessesssesssesssssssssssssssssssssans 12
Figure 2. Example XML CONfigUIationcueereeenneemeesesssessssssssssesssesssssssssssssssssssssssssans 19
Figure 3. Example XML file for time allocation. ... 26
Figure 4. Server-friendly metadata approach: offset the create/open in time........28
Figure 5. EXaMPIE XMLcciirereeseesesrsssssssssssssesssesssssssesssesssessssssssssssesssesssssssssssssssssssssssssssans 31
Figure 6. EXaMPIE C SOUICEcuieueercereererssessesssesssesssssssesssesssessssssssssssssssesssssssssssssssssssssssssssans 32
Figure 7. Example Original Client XMLccomenennmeeessssssssessesssssssssssssssssssssssssans 33
Figure 8. Example NSSI Client XMLccoeenernesnessesssessssssssssesssesssesssssssssssssssssssssans 33
Figure 9. Example NSSI Staging Service XML........coeeenesessesssessssssssssssssssessnns 33
Figure 10. Example PBS script with NSSI Staging Service.......eeeeeeenne: 34
Figure 11. DataTap architeCtUIe. ... ssssssssssssssssans 35
Figure 12. Select DART as a transport method in the configuration file example.36
Figure 13. Start the server component in a job file first. ... 37
Figure 14. Wait for server start-up completion and export the configuration to
ENVIroNMENt Variables. ... ssssss s sssssssssssssssssans 37
Figure 15. BP file SEIUCLUTE ...t ssssss s s ssssssssssssssssans 50
Figure 16. Group indeX table ... sessssssssssesssessssssssssssssssssssssans 52
Figure 17. Variables indeX tableeesessessssessesssesssessssssssssssssssssssnns 53
Figure 18. Process group StruCtUIe.......usssssssssssssssssssssssssssssssssssssssens 54
Figure 19. Attribute entry STIUCTUTE ...ccvvereseerseeeseersseesesssess s sssssssssssssssssssssans 56
Figure 20. DPIS ULIILY .. sessssssesssess s ssssssssssssssesssssssssssssssssssssssssans 58
Figure 21. bpdump UL ..o sessssssssssssssssesssssssssssssssssssssssssans 60
Figure 22. Original program (examples/C/manual/1_nonadios_example.c).......... 66
Figure 23. Example config.Xml file........conncninsecsesssessessesssesssesssssssssssssenenes 66
Figure 24. Example gwrite_temperature.ch file........nseeerseeeseennne 67
Figure 25. Example adios program to write P files from P processors
(examples/C/manual/2_adioS_WITLE.C) ..vrernrerreesemseerserssssssssssesssesssssssesssesssssssssssesssens 68
Figure 26. Read in data generated by 2_adios_write using gread_temperature.ch
(examples/C/manual/3_adiosS_Tead.C)reeememseeseessessssssssssessssssssssesssessssssssessens 70
Figure 27. Example of a generated gread_temperature.ch file..........nnnierneenne. 70
Figure 28. Example ADIOS program writing N files from P processors (N)............. 71
Figure 29. Config.xml for a global array (examples/C/global-
array/adios_global.XmI) ... 72
Figure 30. gwrite header file generated from config.xmlcooorerceneennernneeineeneennne 73
Figure 31. Config.xml for a global array with time (examples/C/global-array-
time/adios_globaltime.XMI) ... sesssesaens 75
Figure 32. Config.xml for creating histogram for an array variable
(examples/C/stat/Stat.XIM) ... sssssesssesssesssssssessens 76

vii

Abbreviations
ADIOS

API

DART
GTC
HPC
1/0
MDS
MPI
NCCS
ORNL
0S
PG
POSIX
RDMA
XML

Adaptive Input/Output System

Application Program Interface

Decoupled and Asynchronous Remote Transfers

Gyrokinetic Turbulence Code
high-performance computing
input/output

metadata server

Message-Passing Interface

National Center for Computational Sciences
Oak Ridge National Laboratory
operating system

process group

Portable Operating System Interface
remote direct memory access

Extensible Markup Language

viii

Acknowledgments

The Adaptive Input/Output (I/0) system (ADIOS) is a joint product of the
National Center of Computational Sciences (NCCS) at Oak Ridge National
Laboratory (ORNL) and the Center for Experimental Research in Computer
Systems at the Georgia Institute of Technology. This work is being led by Scott
Klasky (ORNL); Jay Lofstead (Georgia Tech, funded from Sandia Labs) is the main
contributor. ADIOS has greatly benefited from the efforts of the following ORNL
staff: Steve Hodson, who gave tremendous input and guidance; Chen Jin, who
integrated ADIOS routines into multiple scientific applications; Norbert
Podhorszki, who integrated ADIOS with the Kepler workflow system and worked
with Qing Gary Liu on the read API. ADIOS also benefited from the efforts of the
Georgia Tech team, including Prof. Karsten Schwan, Prof. Matt Wolf, Hassan
Abbasi, and Fang Zheng. Wei Keng Liao, Northwestern University, and Wang Di,
SUN, have also been invaluable in our coding efforts of ADIOS, writing several
important code parts. Essentially, ADIOS is componentization of I/0 transport
methods. Among the suite of transport methods, Decoupled and Asynchronous
Remote Transfers (DART) was developed by Prof. Manish Parashar and his
student Ciprian Docan of Rutgers University.

Without a scientific application, ADIOS would not have come this far. Special
thanks go to Stephane Ethier at the Princeton Plasma Physics Laboratory (GTS);
Researcher Yong Xiao and Prof. Zhihong Lin from the University of California,
Irvine (GTC); Julian Cummings at the California Institute of Technology; Seung-
Hoe and Prof. C. S. Chang at New York University (XGC); Jackie Chen and Ray
Grout at Sandia (S3D); and Luis Chacon at ORNL (Pixie3D).

This project is sponsored by ORNL, Georgia Tech, The Scientific Data
Management Center (SDM) at Lawrence Berkeley National Laboratory, and the
U.S. Department of Defense.

ADIOS contributors

ANL: Rob Ross

Auburn University: Weikuan Yu, Yuan Tian

Georgia Tech: Hasan Abbasi, Jay Lofstead, Karsten Schwan, Fang Zheng,

NCSU: Xiaosong Ma, Sriram Lakshminarasimhan, Abhijit Sachidananda,
Michael Warren

Northwestern University: Alok Choudhary, Wei Keng Liao, Chen Jin

ORNL: Steve Hodson, Scott Klasky, Qing Gary Liu, Norbert Podhorszki,
Steve Poole, Nagiza Samatova, Matthew Wolf

Rutgers University: Ciprian Docan, Fan Zhang, Manish Parashar

Sandia: Todd Kordenbrock

SUN: Wang Di

ix

1 Introduction

1.1 Goals

As computational power has increased dramatically with the increase in the
number of processors, input/output (I0) performance has become one of the
most significant bottlenecks in today’s high-performance computing (HPC)
applications. With this in mind, ORNL and the Georgia Institute of Technology’s
Center for Experimental Research in Computer Systems have teamed together to
design the Adaptive 1/0 System (ADIOS) as a componentization of the 10 layer,
which is scalable, portable, and efficient on different clusters or supercomputer
platforms. We are also providing easy-to-use, high-level application program
interfaces (APIs) so that application scientists can easily adapt the ADIOS library
and produce science without diving too deeply into computer configuration and
skills.

1.2 What Is ADIOS?

ADIOS is a state-of-the-art componentization of the I0 system that has
demonstrated impressive 10 performance results on leadership class machines
and clusters; sometimes showing an improvement of more than 1000 times over
well known parallel file formats. ADIOS is essentially an /0 componentization of
different 1/0 transport methods. This feature allows flexibility for application
scientists to adopt the best /0 method for different computer infrastructures
with very little modification of their scientific applications. ADIOS has a suite of
simple, easy-to-use APIs. Instead of being provided as the arguments of APIs, all
the required metadata are stored in an external Extensible Markup Language
(XML) configuration file, which is readable, editable, and portable for most
machines.

1.3 The Basic ADIOS Group Concept

The ADIOS “group” is a concept in which input variables are tagged according to
the functionality of their respective output files. For example, a common scientific
application has checkpoint files prefixed with restart and monitoring files
prefixed with diagnostics. In the XML configuration file, the user can define
two separate groups with tag names of adios-group as “restart” and “diagnostic.”
Each group contains a set of variables and attributes that need to be written into
their respective output files. Each group can choose to have different 1/0
transport methods, which can be optimal for their I/0 patterns.

1.4 Other Interesting Features of ADIOS

ADIOS contains a new self-describing file format, BP. The BP file format was
specifically designed to support delayed consistency, lightweight data
characterization, and resilience. ADIOS also contains python scripts that allow
users to easily write entire “groups” with the inclusion of one include statement
inside their Fortran/C code. Another interesting feature of ADIOS is that it allows

1

users to use multiple /O methods for a single group. This is especially useful if
users want to write data out to the file system, simultaneously capturing the
metadata in a database method, and visualizing with a visualization method.

The read API enables reading arbitrary subarrays of variables in a BP file and
thus variables written out from N processor can be read in on arbitrary number
of processors. ADIOS also takes care of the endianness problem at converting to
the reader’s architecture automatically at reading time. Matlab reader is included
in the release while the VisIt parallel interactive visualization software can read
BP files too (from version 2.0).

ADIOS is fully supported on Cray XT and IBM BlueGene/P computers as well as
on Linux clusters and Mac OSX.

1.5 Future ADIOS 2.0 Goals

One of the main goals for ADIOS 2.0 is to produce faster reads via indexing
methods. Another goal is to provide more advanced data types via XML in ADIOS
so that it will be compatible with F90/c/C++ structures/objects.

We will also work on the following advanced topics for ADIOS 2.0:

* Alink to an external database for provenance recording.

* Autonomics through a feedback mechanism from the file system to
optimize 1/0 performance. For instance, ADIOS can be adaptively changed
from a synchronous to an asynchronous method or can decide when to
write restart to improve 1/0 performance.

* A staging area for data querying, analysis, and in situ visualization.

2 Installation

2.1 Obtaining ADIOS

You can download the latest version from the following website

http://www.nccs.gov/user-support/adios

2.2 Quick Installation
To get started with ADIOS, the following steps can be used to configure, build,
test, and install the ADIOS library, header files, and support programs.

cd trunk/
./configure -prefix=<install-dir> --with-mxml=<mxml-location>
make

make install

Note: There is a runconf batch script in the trunk set up for our machines.
Studying it can help you setting up the appropriate environment variables and
configure options for your system.

2.2.1 Linux cluster

The following is a snapshot of the batch scripts on Ewok, an Intel-based
Infiniband cluster running Linux:

export MPICC=mpicc

export MPIFC=mpif90

export CC=pgcc

export FC=pgf90

export CFLAGS="-fPIC”

./configure --prefix = <location for ADIOS software installation>
--with-mxml=<location of mini-xml installation>
--with-hdf5=<location of HDF5 installation>
--with-netcdf=<location of netCDF installation>

The compiler pointed by MPICC is used to build all the parallel codes and tools
using MPI, while the compiler pointed by CC is used to build the sequential tools.
In practice, mpicc uses the compiler pointed by CC and adds the MPI library
automatically. On clusters, this makes no real difference, but on Bluegene, or Cray
XT, parallel codes are built for compute nodes, while the sequential tools are built
for the login nodes. The -fPIC compiler flag is needed only if you build the Matlab
tools.

2.2.2 Cray XT5

To install ADIOS on a Cray XT5, the right compiler commands and configure flags
need to be set. The required commands for ADIOS installation on Jaguar are as
follows:

export CC=cc

export FC=ftn

./configure --prefix = <location for ADIOS software installation>
—-——with-mxml=<location of mini-xml installation>
--with-hdf5=<location of HDF5 installation>
--with-netcdf=<location of netCDF installation>

2.2.3 Support for Matlab

Matlab requires ADIOS be built with the GNU C compiler. It also requires
relocatable codes, so you need to add the -fPIC flag to CFLAGS before configuring
ADIOS. The matlab reader is not built automatically at make and is not installed
with ADIOS. You need to compile it with Matlab’s MEX compiler after the make
and copy the files manually to somewhere where Matlab can see them.

cd tools/matlab
make matlab

2.3 ADIOS Dependencies

2.3.1 Mini-XML parser (required)
The Mini-XML library is used to parse XML configuration files. Mini-XML can be
downloaded from

http://www.minixml.org/software.php

2.3.2 MPI and MPI-IO (required)
MPI and MPI-IO is required for ADIOS.

Currently, most large-scale scientific applications rely on the Message Passing
Interface (MPI) library to implement communication among processes. For
instance, when the Portable Operating System Interface (POSIX) is used as
transport method, the rank of each processor in the same communication group,
which needs to be retrieved by the certain MPI APIs, is commonly used in
defining the output files. MPI-I0 can also be considered the most generic 1/0
library on large-scale platforms.

2.3.3 Fortran90 compiler (optional)

The Fortran 90 interface and example codes are compiled only if there is an f90
compiler available. By default it is required but you can disable it with the option
--disable-fortran

2.3.4 Serial NetCDF-3 (optional)

The bp2ncd converter utility to NetCDF format is built only if NetCDF is available.
Currently ADIOS uses the NetCDF-3 library. Use the option
--with-netcdf=<path> or ensure that the NETCDF_DIR environment variable
is set before configuring ADIOS.

2.3.5 Serial HDF5 (optional)

The bp2h5 converter utility to HDF5 format is built only if a HDF5 library is
available. Currently ADIOS uses the 1.6 version of the HDF5 API but it can be built
and used with the 1.8.x version of the HDF5 library too. Use the option
--with-hdf5=<path> when co

nfiguring ADIOS.

2.3.6 PHDF5 (optional)

The transport method writing files in the Parallel HDF5 format is built only if a
parallel version of the HDF5 library is (also) available. You need to use the option
--with-phdf5=<path> to build this transport method.

If you define Parallel HDF5 and do not define serial HDF5, then bp2h5 will be
built with the parallel library.

Note that if you build this transport method, ADIOS will depend on PHDF5 when
you link any application with ADIOS even if you the application does not intend to
use this method.

If you have problems compiling ADIOS with PHDF5 due to missing flags or
libraries, you can define them using

--with-phdf5-incdir=<path>,
--with-phdf5-libdir=<path> and
--with-phdf5-1libs=<link time flags and libraries>

2.3.7 NetCDF-4 Parallel

The NC4 transport method writes files using the NetCDF-4 library which in turn
is based on the parallel HDF5 library. You need to use the option
--with-ncdpar=<path> to build this transport method. Also, you need the
parallel HDFS5 library.

2.3.8 Read-only installation
If you just want the read API to be compiled for reading BP files, use the
--disable-write option.

2.4 Full Installation
The following list is the complete set of options that can be used with configure to
build ADIOS and its support utilities:

--help print the usage of ./configure command
--with-tags[=TAGS] include additional configurations [automatic]
--with-mxml=DIR Location of Mini-XML library

--with-hdf5=<location of HDF5 installation>
--with-hdf5-incdir=<location of HDF5 includes>
--with-hdf5-1ibdir=<location of HDF5 library>
--with-phdf5=<location of PHDF5 installation>
--with-phdf5-incdir=<location of PHDF5 includes>
--with-phdf5-1libdir=<location of PHDF5 library>

5

--with-netcdf=<location of NetCDF installation>
--with-netcdf-incdir=<location of NetCDF includes>
--with-netcdf-libdir=<location of NetCDF library>
--with-ncd4par=<location of NetCDF 4 Parallel installation>
--with-ncdpar-incdir=<location of NetCDF 4 Parallel includes>
--with-ncdpar-libdir=<location of NetCDF 4 Parallel library>
--with-ncdpar-libs=<linker flags besides -L<ncdpar libdir>, e.g. -
lnetcdf

Some influential environment variables are lists below:

cC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

CPPFLAGS C/C++ preprocessor flags, e.g. —-I<include dir> if you
have headers in a nonstandard directory <include dir>

CpPP C preprocessor

CXX C++ compiler command
CXXFLAGS C++ compiler flags

FC Fortran compiler command
FCFLAGS Fortran compiler flags
CXXCPP C++ preprocessor

FE77 Fortran 77 compiler command
FFLAGS Fortran 77 compiler flags
MPICC MPI C compiler command

MPIFC MPI Fortran compiler command

2.5 Compiling applications using ADIOS

Adios configuration creates a text file that contains the flags and library
dependencies that should be used when compiling/linking user applications that
use ADIOS. This file is installed as bin/adios config.flags under the
installation directory by make install. A script, named adios config is also
installed that can print out selected flags. Moreover, if you copy the
adios_config.flags file and remove all ™ characters from it, you can include that file
in your Makefile and use the flags.

3 ADIOS Write API

As mentioned earlier, ADIOS writing is comprised of two parts: the XML
configuration file and APIs. In this section, we will explain the functionality of the
writing API in detail and how they are applied in the program.

3.1 Write API Description

3.1.1 Introduction

ADIOS provides both Fortran and C routines. All ADIOS routines and constants
begin with the prefix “adios_”. For the remainder of this section, only the C
versions of ADIOS APIs are presented. The primary differences between the C and
Fortran routines is that error codes are returned in a separate argument for
Fortran as opposed to the return value for C routines.

A unique feature of ADIOS is group implementation, which is constituted by a list
of variables and associated with individual transport methods. This flexibility
allows the applications to make the best use of the file system according to its
own different I/0 patterns.

3.1.2 ADIOS-required functions

This section contains the basic functions needed to integrate ADIOS into scientific
applications. ADIOS is a lightweight /0 library, and there are only seven required
functions from which users can write scalable, portable programs with flexible
[/0 implementation on supported platforms:

adios_init—initialize ADIOS and load the configuration file
adios_open—open the group associated with the file
adios_group_size—pass the group size to allocate the memory
adios_write—write the data either to internal buffer or disk
adios_read—associate the buffer space for data read into
adios_close—commit write/read operation and close the data
adios_finalize—terminate ADIOS

You can add functions to your working knowledge incrementally without having
to learn everything at once. For example, you can achieve better 1/0 performance
on some platforms by simply adding the asynchronous functions
adios_start_calculation, adios_end_calculation, and adios_end_iteration to your
repertoire. These functions will be detailed below in addition to the seven
indispensable functions.

The following provides the detailed descriptions of required APIs when users
apply ADIOS in the Fortran or C applications.

3.1.2.1 adios_init

This API is required only once in the program. It loads XML configuration file and
establishes the execution environment. Before any ADIOS operation starts,
adios_init is required to be called to create internal representations of
various data types and to define the transport methods used for writing.

int adios_init (const char *xml fname)
Input:
xml fname - string containing the name of the XML configuration file

Fortran example:
call adios_init ("config.xml", ierr)

3.1.2.2 adios_open

This API is called whenever a new output file is opened. adios_open,
corresponding to fopen (not surprisingly), opens an adios-group given by
group name and associates it with one or a list of transport methods, which can
be identified in future operations by the File structure whose pointer is returned
as £d_ p. The group name should match the one defined in the XML file. The I/0
handle £d_p prepares the data types for the subsequent calls to write data using
the io_handle. The third argument, file name, is a string representing the
name of the file. As the last argument, mode is a string containing a file access
mode. It can be any of these three mode specifiers: “r,” “w,” or “a.” Currently,
ADIOS supports three access modes: “write or create if file does not exist,” “read,”
and “append file.” The call opens the file only if no coordination is needed among
processes for transport methods that the users have chosen for this adios_group,
such as POSIX method. Otherwise, the actual file will be opened in
adios_group_size based on the provided argument comm, which will be examined
in Sect. 4.1.2.3. As the last argument, we pass the pointer of coordination
communicator down to the transport method layer in ADIOS. This communicator
is required in MPI-I0-based methods such as collective and independent MPI-10.

int adios_open (int64_t * £d p, const char * group name
,constchar * file name, const char *mode, void *comm)

Input:

fd p—pointer to the internal file structure

group name—string containing the name of the group

file name—string containing the name of the file to be opened

mode—string containing a file access mode

comm— communicator for multi-process coordination
Fortran example:

call adios_open (handle, “restart”, “restart.bp”, "w", comm, ierr)

3.1.2.3 adios_group_size

This function passes the size of the group to the internal ADIOS transport
structure to facilitate the internal buffer management and to construct the group
index table. The first argument is the file handle. The second argument is the size
of the payload for the group opened in the adios_open routine. This value can be
calculated manually or through our python script. It does not affect read
operation because the size of the data can be retrieved from the file itself. The
third argument is the returned value for the total size of this group, including
payload size and the metadata overhead. The value can be used for performance
benchmarks, such as I/0 speed.

int adios_group_size (int64_t * fd p, uint64_t group size, uint64_t *
total size)
Input:
fd_p—pointer to the internal file structure
group size—size of data payload in bytes to be written out. If there is
an integer 2 x 3 array, the payload size is 4*2*3 (4 is the size of integer)
output :
total size—the total sum of payload and overhead, which includes
name, data type, dimensions and other metadata)

Fortran example:
call adios_group_size (handle, groupsize, totalsize, ierr)

3.1.2.4 adios_write

The adios_write routine submits a data element var for writing and associates it
with the given var name, which has been defined in the adios group opened by
adios_open. If the ADIOS buffer is big enough to hold all the data that the adios
group needs to write, this API only copies the data to buffer. Otherwise,
adios_write will write to disk without buffering. Currently, adios_write supports
only the address of the contiguous block of memory to be written. In the case of a
noncontiguous array comprising a series of subcontiguous memory blocks, var
should be given separately for each piece.

In the next XML section, we will further explain that var name is the value of
attribute “name” while var is the value of attribute “gwrite,” both of which are
defined in the corresponding <var> element inside adios_group in the XML file.
By default, it will be the same as the value of attribute “name” if “gwrite” is not
defined.

int adios_write (int64_t £d_p, const char * var name, void * var)
Input:
fd p—pointer to the internal file structure
var name—string containing the annotation name of scalar or vector in
the XML file
var —the address of the data element defined need to be written

9

Fortran example:
call adios_write (handle, "myvar", v, ierr)

3.1.2.5 adios_read

The write API contains a read function (historically, the first one) that uses the
same transport method and the xml config file to read in data. It works only on
the same number of processes as the data was written out. Typically,
checkpoint/restart files are written and read on the same number of processors
and this function is the simplest way to read in data. However, if you need to read
in on a different number of processors, or you do not want to carry the xml config
file with the reading application, you should use the newer and more generic read
API discussed in Section 7.

Similar to adios_write, adios_read submits a buffer space var for reading a data
element into. This does NOT actually perform the read. Actual population of the
buffer space will happen on the call to adios_close. In other words, the value(s) of
var can only be utilized after adios_close is performed. Here, var name
corresponds to the value of attribute “gread” in the <var> element declaration
while var is mapped to the value of attribute “name.” By default, it will be as
same as the value of attribute “name” if “gread” is not defined.

int adios_read (int64_t £d p, const char * var name, uint64_t read size,
void * var
)
Input:
fd p - pointer to the internal file structure
var name - the name of variable recorded in the file
var - the address of variable defined in source code
read size - size in bytes of the data to be read in

Fortran example:
call adios_read (handle, “myvar”, 8, v, ierr)

3.1.2.6 adios_close

The adios_close routine commits the writing buffer to disk, closes the file, and
releases the handle. At that point, all of the data that have been copied during
adios_write will be sent as-is downstream. If the handle were opened for read, it
would fetch the data, parse it, and populate it into the provided buffers. This is
currently hard-coded to use posix [/0 calls.

int adios_close (int64_t* £d_p);
Input:
fd p - pointer to the internal file structure

10

Fortran example:
call adios_close (handle, ierr)

3.1.2.7 adios_finalize

The adios finalize routine releases all the resources allocated by ADIOS
and guarantees that all remaining ADIOS operations are finished before the code
exits. The ADIOS execution environment is terminated once the routine is
fulfilled. The proc id parameter provides users the opportunity to customize
special operation on proc id—usually the ID of the head node.

int adios_finalize (int proc_1id)

Input:
proc_id - the rank of the processe in the communicator or the user-
defined coordination variable

Fortran example:
call adios_finalize (rank, ierr)

3.1.3 Nonblocking functions

3.1.3.1 adios_end_iteration

The adios_end_iteration provides the pacing indicator. Based on the entry in the
XML file, it will tell the transport method how much time has elapsed in a
transfer.

3.1.3.2 adios_start_ calculation/ adios_end_calculation

Together, adios_start_calculation and adios_end_calculation indicate to the
scientific code when nonblocking methods should focus on engaging their 1/0
communication efforts because the process is mainly performing intense, stand-
alone computation. Otherwise, the code is deemed likely to be communicating
heavily for computation coordination. Any attempts to write or read during those
times will negatively impact both the asynchronous I/0 performance and the
interprocess messaging.

3.1.4 Other function
One of our design goals is to keep ADIOS APIs as simple as possible. In addition to
the basic I/0 functions, we provide another routine listed below.

3.1.4.1 adios_get_write_buffer

The adios_get_write_buffer function returns the buffer space allocated from the
ADIOS buffer domain. In other words, instead of allocating memory from free
memory space, users can directly use the allocated ADIOS buffer area and thus
avoid copying memory from the ADIOS buffer to a user-defined buffer.

int adios_get_write_buffer (int64_t fd_p, const char * var_name, uint64_t * size,
void ** buffer)

11

Input:
fd_p - pointer to the internal File structure
var_ name - name of the variable that will be read
size - size of the buffer to request
output:
buffer - initial address of read-in buffer for storing the data of var name

3.1.5 Create a first ADIOS program

Figure 1 is a programming example that illustrates how to write a double-
precision array t and a double-precision array with size of NX into file called
“test.bp,” which is organized in BP, our native tagged binary file format. This
format allows users to include rich metadata associated with the block of binary
data as well the indexing mechanism for different blocks of data (see Chap. 5).

/*example of parallel MPI write into a single file */
#include <stdio.h> // ADIOS header file required
#include ”adios.h”
int main (int argc, char *argvl[])
{

int i, rank, NX;

double t [NX];

// ADIOS variables declaration

int64 t handle;

uint 64 total size;

MPI_Comm comm = MPI_COMM_WORLD;

MPI Init (&argc, &argv);
MPI Comm rank (comm, é&rank);

// data initialization
for (1=0; 1i<NX; i++)
t [1] = 1 * (rank+l) + 0.1;

// ADIOS routines

adios_init (“config.xml”);

adios_open (&handle, “temperature”, “data.bp”, “w”,&comm) ;
adios_group_size (handle, 4, total size);

adios _write (handle, ”NX”, &NX);

adios write (handle, “temperature”, t);

adios_close (handle);

adios_finalize (rank);

MPI Finalize();

return O;

Figure 1. ADIOS programming example.

12

4 ADIOS No-XML Write API

ADIOS provides an option of writing data without loading an XML configuration
file. This set of APIs is designed to cater to output data , which is not definable
from the start of the simulation; such as an adaptive code. Using the no-XML API
allows users to change their 10 setup at runtime in a dynamic fashion. This
section discusses the details of no-XML write API's and demonstrates how they
can be used in a program.

4.1 No-XML Write API Description

This section lists routines that are needed for ADIOS no-XML functionalities.
These routines prepare ADIOS metadata construction, for example, setting up
groups, variables, attributes and 10 transport method, and hence must be called
before any other ADIOS [/O operations, i.e., adios_open, adios_group_size,
adios_write, adios_close. A common practice of using no-XML API is to first
initialize ADIOS by calling adios_init noxml and call adios_select_method to
allocate necessary buffer for ADIOS to achieve best performance. Subsequently,
declare a group via adios_declare_group and then adios_define_var API needs to
be repetitively called to define every variable for the group. In the end,
adios_select_method needs to be called to choose a specific transport method.

adios_init_noxml—initialize no-XML ADIOS

adios_allocate_buffer—specify ADIOS buffer allocation strategy and buffer size
in MB

adios_declare_group—declare an ADIOS group

adios_define_var—define an ADIOS variable for an ADIOS group.
adios_define_attribute—define an ADIOS attribute for an ADIOS group
adios_select_method—associate an ADIOS transport method, such as MPI,
POSIX method with a particular ADIOS group. The transport methods that are
supported can be found at chapter 6

4.1.1 adios_init_noxml

As opposed adios_init, adios_init_noxml initialize ADIOS without loading XML
configuration file. Note that adios init noxml is required to be called only
once and before any other ADIOS API.

int adios_init_noxml ()
Input:
None

Fortran example:
call adios_init_noxml_ (ierr)

13

4.1.2 adios_allocate_buffer
The adios allocate buffer routine allocates memory buffer for ADIOS
internal.

int adios_allocate_buffer (
enum ADIOS_BUFFER_ALLOC_WHEN adios_buffer_alloc_when
,uint64_t buffer_size)

Input:
adios buffer alloc when - indicates when ADIOS buffer should be
allocated. The value can be either ADIOS_BUFFER_ALLOC_NOW or
ADIOS_BUFFER_ALLOC_LATER. Please see section 5.3 for more details on ADIOS
buffer.
buffer size -the size of ADIOS buffer in MB.

Fortran example:

call adios_allocate_buffer (10, adios_err)

Note that, as opposed to C API, the Fortran APl doesn’t have
adios_buffer_alloc_when argument as it supports Abios_BUFFER_ALLOC_NOW
only as of the latest ADIOS version.

4.1.3 adios_declare_group
This API is used to declare a new ADIOS group. The concept of ADIOS group,
variable, attribute is detailed in the next chapter.

int adios_declare_group (int64_t * id
, const char * name
, const char * time_index
, enum ADIOS_FLAG stats
);
Input:
name - string containing the annotation name of the group
time index - string containing the name of time attribute. If there is no
time attribute, a null string (“”) should be passed
stats - a flag indicating whether or not to generate ADIOS statistics
during writing, such as min/max/standard deviation. The value of stats
can be either adios flag yes or adios flag no.If stats is set to
adios flag yes, ADIOS internal calculates and outputs statistics for
each processor automatically. The downside of turning stats on is that it
consumes more CPU and memory during writing
Output:
id - pointer to the ADIOS group structure

Fortran example:

14

call adios_declare_group (m_adios_group, "restart", "iter", 1, adios_err)
4.1.4 adios_define_var
This API is used to declare an ADIOS variable for a particular group.

int adios_define_var (int64_t group_id, const char * name
,const char * path
,int type
,const char * dimensions
,const char * global_dimensions
,const char * local_offsets
);
Input:
group id - pointer to the internal group structure (returned by
adios_declare_group call)
name - string containing the annotation name of a variable
path - string containing the path of an variable
type - variable type
dimensions - string containing variable local dimension. If the variable
is a scalar, null string (“”) is expected. See 5.2.5 and 5.2.6 for details on
ADIOS dimensions.
global dimensions - string containing variable global dimension. If
the variable is a scalar or local array, null string (“”) is expected.
local offsets - string containing variable local offset. If the variable is
a scalar or local array, null string (“”) is expected.

Output:
None

Fortran example:
call adios_define_var (m_adios_group, "temperature” &
,""’ 6 &
,"NX", "G", "0", adiOS_err)

4.1.5 adios_define_attribute
This API is used to declare an ADIOS attribute for a particular group. See section
5.2.3 for more details on ADIOS attribute.

int adios_define_attribute (int64_t group
,const char * name
,const char * path
,enum ADIOS_DATATYPES type
,const char * value
,const char * var
);

Input:

15

group - pointer to the internal group structure (returned by
adios_declare_group call)

name - string containing the annotation name of an attribute

path - string containing the path of an attribute

type - type of an attribute

value - pointer to a memory buffer that contains the value of the
attribute

var - name of the variable which contains the attribute value. This argument
needs to be set if argument “value” is null.

Output:
None

Fortran example:
call adios_define_attribute (m_adios_group, "date" &
’"", 9 &
,"Feb 2010","", adios_err)

4.1.6 adios_select_method
This API is used to choose an ADIOS transport method for a particular group.

int adios_select_method (int64_t group, const char * method
,const char * parameters
,const char * base_path
);
Input:
group - pointer to the internal group structure (returned by
adios_declare_group call)
method - string containing the name of transport method that will be
invoked during ADIOS write. A list of currently supported ADIOS methods
can be found at Chapter 6.
parameters - string containing user defined parameters that are fed
into transport method. For example, in MPI_AMR method, the number of
subfiles to write can be set via this argument (section 6.1.5). This argument
will be ignored silently if a transport method doesn’t support the given
parameters.
base path - string containing the root directory to use when writing to
disk or similar purposes

Fortran example:
call adios_select_method (m_adios_group, "MPI", "", "", adios_err)

16

4.2 Create a no-XML ADIOS program
Below is a programming example that illustrates how to write a double-precision
array t and a double-precision array with size of NX using no-XML API. A more
advanced example on writing out data sub-blocks is listed in the appendix 14.3.

program adios global

implicit none

ierr

include 'mpif.h'

character (len=256) filename =
"adios global no xml.bp"

integer rank, size, i,

integer, parameter NX=10

integer o, G

real*8, dimension (NX) t

integer comm

integer adios_err

integer*8
integer*8
integer*8

adios_groupsize,
adios_handle
m_adios_group

adios_totalsize

17

call MPI Init (ierr)
call MPI Comm dup (MPI COMM WORLD, comm, ierr)
call MPI Comm rank (comm, rank, ierr)
call MPI Comm size (comm, size, lerr)
call adios _init noxml (adios_err)
call adios_allocate buffer (10, adios err)
call adios_declare group (m_adios group, "restart", "iter",
adios_err)
call adios_select method (m_adios group, "MPI", "", ""
adios_err)
! define a integer
call adios define var (m_adios group, "NX" &
,n" 2 &
me,omn, ", adios_err)
! define a integer
call adios _define var (m_adios group, "G" &
,n" 2 &
me,omn, ", adios_err)
! define a integer
call adios define var (m_adios group, "O" &
,n", 2 &
me,omn, ", adios_err)
! define a global array
call adios _define var (m_adios group, "temperature" &
,n" 6 &
, "NX", "G", "O", adios_err)

call adios open (adios handle, "restart", filename, "w",
comm, adios err)

adios _groupsize = 4 + 4 + 4 + NX * 8
call adios _group size (adios_handle, adios groupsize,
adios_totalsize, adios_err)

G = NX * size
O = NX * rank
do i =1, NX
t (1) = rank * NX + 1 - 1
enddo

call adios write
call adios write
call adios write
call adios write
adios_err)

adios_handle, "NX", NX, adios err)
adios_handle, "G", G, adios_err)
adios_handle, "O", O, adios_err)
adios_handle, "temperature", t,

(
(
(
(

call adios close (adios _handle, adios err)
call MPI Barrier (comm, ierr)
call adios finalize (rank, adios_err)

call MPI Finalize (ierr)
end program

Figure 2. ADIOS no-XML example

5 XML Config File Format

5.1 Overview

XML is designed to allow users to store as much metadata as they can in an
external configuration file. Thus the scientific applications are less polluted and
require less effort to be verified again.

First, we present the XML template. Second, we demonstrate how to construct the
XML file from the user’s own source code. Third, we note how to troubleshoot
and debug the errors in the file.

Abstracting metadata, data type, and dimensions from the source code into an
XML file gives users more flexibility to annotate the arrays or variables and
centralizes the description of all the data structures, which in return, allows [/0
componentization for different implementation of transport methods. By
cataloguing the data types externally, we have an additional documentation
source as well as a way to easily validate the write calls compared with the read

18

calls without having to decipher the data reorganization or selection code that
may be interspersed with the write calls. It is useful that the XML name attributes
are just strings. The only restrictions for their content are that if the item is to be
used in a dataset dimension, it must not contain commas and must contain at
least one non-numeric character. This is useful for incorporating expressions as
various array dimensions elements. Figure 3 illustrates the corresponding XML
configuration for the example we demonstrated in Figure 1.

At a minimum, a configuration document must declare an adios-config
element. It serves as a container for other elements; as such, it MUST be used as
the root element. The expected children in any order would be adios-group,
method, and buffer. The main elements of the xml file format are of the format

<element-name attr1l attr2 ...>

<adios-config>
<adios-group>
<var />

</adios-group>

<method>
<buffer>
</adios-config>

Figure 3. Example XML configuration

5.2 adios-group

The adios-group element represents a container for a list of variables that share
the common I/0 pattern as stated in the basic concepts of ADIOS in first chapter.
In this case, the group domain division logically corresponds to the different
functions of output in scientific applications, such as restart, diagnosis, and
snapshot. Depending on the different applications, adios-group can occur as many
times as is needed.

5.2.1 Declaration

The following example illustrates how to declare an adios group inside an XML
file. First we start with adios-group as our tag name, which is case insensitive. It
has an indispensable attribute called “name,” whose value is usually defined as a
descriptive string indicating the function of the group. In this case, the string is
called “restart,” because the files into which this group is written are used as
checkpoints. The second attribute “host-language” indicates the language in

19

which this group’s 1/0 operations are written. The value of attribute
“coordination-communicator” is used to coordinate the operations on a shared
file accessed by multiple processes in the same communicator domain.
“Coordination-var” provides the ability to use the user-defined variable, for
example mype, rather than an MPI communicator for file coordination.

<adios-group name="restart”
host-language="C"
coordination-communicator="comm”
coordination-var="mype”
time-index="iter” />

Required:

e name—containing a descriptive string to name the group

Optional:
« host-language—language in which the source code for group is written
e coordination-communicator—MPI-10 writing to a shared file

e coordination-var—coordination variables for non-MPI methods, such as
Datatap method

¢ time-index—time attribute variable

5.2.2 Variables
The nested variable element “var” for adios_group, which can be either an array
or a primitive data type, is determined by the dimension attribute provided.

5.2.2.1 Declaration
The following is an example showing how to define a variable in the XML file.

<var name="z-plane ion particles”
gwrite="“zion”
gread="zion_read”
type="adios_real”
dimensions="7,mimax”
read="yes” />

5.2.2.2 Attribute list
The attributes associated with var element as follows:

Required:
e name - the string name of variable stored in the output file

e type - the data type of the variable

20

Optional:

« gwrite - the value will be used in the python scripts to generate adios_write
routines; the default value will be the same as attribute name if
gwrite is not defined.

e gread - the value will be used in the python scripts to generate adios_read
routines’ the default value will be the same as attribute name if
gread is not defined.

e path - HDF-5-style path for the element or path to the HDF-5 group or data
item to which this attribute is attached. The default value is “/”.

e dimensions - a comma-separated list of numbers and/or names that
correspond to integer var elements determine the size of this
item. If not specified, the variable is scalar.

e read - value is either yes or no; in the case of no, the adios_read routine will
not be generated for this var entry. If undefined, the default value will
be yes.

5.2.3 Attributes

The attribute element for adios_group provides the users with the ability to
specify more descriptive information about the variables or group. The attributes
can be defined in both static or dynamic fashions.

5.2.3.1 Declaration
The static type of attributes can be defined as follows:

<attribute name="experimental date”
path="/zion”
value="Sep-19-2008”"
type="adios_real” />

If an attribute has dynamic value that is determined by the runtime execution of
the program, it can be specified as follows:
<attribute name="experimental date”

path="/zion”

var="time” />

where var “time” need to be defined in the same adios-group.

5.2.3.2 Attribute list
Required:

e name - name of the attribute

e path - hierarchical path inside the file for the attribute

21

e value - attribute has static value of the attribute, mutually exclusive with the
attribute var

e type - string or numeric type, paired with attribute value, in other words,,
mutually exclusive with the attribute var also

e var - attribute has dynamic value that is defined by a variable in var

5.2.4 Gwrite/src

The element <Gwrite/src> is unlike <var> or <attribute>, which are parsed and
stored in the internal file structure in ADIOS. The element <gwrite> only affects
the execution of python scripts (see Chap. 10). Any content (usually comments,
conditional statements, or loop statements) in the value of attribute “src” is
copied identically into generated pre-processing files. Declaration

<gwrite src=" " />
Required:

e src - any statement that needs to be added into the source code. This code
must will be inserted into the source code, and must be able to be compiled in
the host language, C or Fortran.

5.2.5 Global arrays

The global-bounds element is an optional nested element for the adios-group. It
specifies the global space and offsets within that space for the enclosed variable
elements. In the case of writing to a shared file, the global-bounds information is
recorded in BP file and can be interpreted by converters or other postprocessing
tools or used to write out either HDF5 or NetCDF files by using PHDF5 or the
PnetCDF method.

5.2.6 Time-index

ADIOS allows a dataset to be expanded in the space domain given by global
bounds and in time domain. It is very common for scientific applications to write
out a monitoring file at regular intervals. The file usually contains a group of time-
based variables that have undetermined dimensional value on the time axis.
ADIOS is Similar to NetCDF in that it accumulates the time-index in terms of the
number of records, which theoretically can be added to infinity.

If any of variables in an adios group are time based, they can be marked out by
adding the time-index variable as another dimension value.

5.2.6.1 Declaration

<global-bounds dimensions="nx_g, ny_g” offsets="nx_o,0” />
... variable declarations ...

</global-bounds>

Required:

22

e dimensions - the dimension of global space
« offsets - the offset of the data set in global space

Any variables used in the global-bounds element for dimensions or offsets
declaration need to be defined in the same adios-group as either variables or
attributes.

For detailed global arrays use, see the example illustrated in Section 12.8.

Changing I/0 Without Changing Source: The method element provides the
hook between the adios-group and the transport methods. The user employs a
different transport method simply by changing the method attribute of the
method element. If more than one method element is provided for a given group,
each element will be invoked in the order specified. This neatly gives triggering
opportunities for workflows. To trigger a workflow once the analysis data set has
been written to disk, the user makes two element entries for the analysis adios-
group. The first indicates how to write to disk, and the second performs the
trigger for the workflow system. No recompilation, relinking, or any other code
changes are required for any of these changes to the XML file.

5.2.7 Declaration

The transport element is used to specify the mapping of an /0 transport method,
including optional initialization parameters, to the respective adios-group. There
are two major attributes required for the method element:

<transport group="restart”
method="MPI”
priority="1"
iteration="100"/>
Required:

e group - corresponds to an adios-group specified earlier in the file.

e method - a string indicating a transport method to use with the associated
adios-group

Optional:

e priority- a numeric priority for the I/O method to better schedule this write
with others that may be pending currently

« base-path-the root directory to use when writing to disk or similar
purposes

e iterations- a number of iterations between writes of this group used to
gauge how quickly this data should be evacuated from the
compute node

23

5.2.8 Methods list
As the componentization of the 10 substrate, ADIOS supports a list of transport
methods, described in Section 6:

* NULL

* POSIX

* MPI

* MPI-LUSTRE

e MPI-AMR

* PHDF5

* NC4 (NETCDF4)
* NSSI

* DATATAP

* DART

5.3 Buffer specification

The buffer element defines the attributes for internal buffer size and creating
time that apply to the whole application (Figure 4). The attribute allocate-time is
identified as being either ‘now” or “oncall” to indicate when the buffer should be
allocated. An “oncall” attribute waits until the programmer decides that all
memory needed for calculation has been allocated. It then calls upon ADIOS to
allocate buffer. There are two alternative attributes for users to define the buffer
size: MB and free-memory-percentage.

5.3.1 Declaration
<buffer size-MB=“100"
allocate-time="now” />

Required:

e size-MB - the user-defined size of buffer in megabytes. ADIOS can at most
allocate from compute nodes. It is exclusive with free-memory-
percentage.

e free-memory percentage - the user-defined percentage from 0 to 100% of
freememory available on the machine. It is exclusive with size-MB.

e allocate-time - indicates when the buffer should be allocated

5.4 Enabling Histogram

ADIOS 1.2 has the ability to compute a histogram of the given variable’s data
values at write time. This is specified via the <analysis> tag in the XML file. The
parameters "adios-group" and "var" specify the variable for which the histogram
is to be performed. "var" is the name of the variable and "adios-group" is the
name of the adios group to which the variable belongs to.

24

5.4.1 Declaration
The histogram binning intervals can be input in two ways via the XML file:

* By listing the break points as a list of comma separated values in the
parameter "break-points"

<analysis adios-group="temperature" var="temperature"
break-points="0, 100, 200, 300" />

* By specifying the boundaries of the breaks, and the number of intervals
between variable’s min and max values

<analysis adios-group="temperature" var="temperature"
min="0" max="300" count="3"/>

Both inputs create the bins (-Inf, 0), [0, 100), [100, 200), [200, 300), [300, Inf).
For this example, the final set of frequencies for these 5 binning intervals will be
calculated.

Required:
e adios-group - corresponds to an adios-group specified earlier in the file.
e var - corresponds to a variable in adios-group specified earlier in the file.
Optional:
e break-points - list of comma separated values sorted in ascending order
e min - minimum value of the binning boundary

e max - maximum value of the binning boundary
(it should be greater than min)

e count - number of break points between the min and max values

A valid set of binning intervals must be provided either by specifying "min,"
"max," and "count” parameters or by providing the "break-points." The intervals
given under "break-points" will take precedence when calculating the histogram
intervals, if "min," "max," and "count" as well as “break-points” are provided.

5.5 An Example XML file

<adios-config host-language="C">

<adios-group name="temperature" coordination-communicator="comm">
<var name="NX" type="integer" />
<var name="t" type="double" dimensions="NX"/>
<attribute name="recorded date" path="/" value="Sep 19, 2008" type="string" />

25

</adios-group>
<method group="temperature " method="MPI"/>

<buffer size-MB="1" allocate-time="now" />
<analysis adios-group="temperature" var="t" break-points="0, 100, 200, 300"/>

</adios-config>

Figure 4. Example XML file for time allocation.

26

6 Transport methods

Because of the time it can take to move data from one process to another or to
write and read data to and from a disk, it is often advantageous to arrange the
program so that some work can be done while the messages are in transit. So far,
we have used non-blocking operations to avoid waiting. Here we describe some
details for arranging a program so that computation and I/O can take place
simultaneously.

6.1 Synchronous methods

6.1.1 NULL

The ADIOS NULL method allows users to quickly comment out an ADIOS group by
changing the transport method to “NULL,” users can test the speed of the routine
by timing the output against no I/0. This is especially useful when working with
asynchronous methods, which take an indeterminate amount of time. Another
useful feature of this I/0 is that it quickly allows users to test out the system and
determine whether bugs are caused by the I/0 system or by other places in the
codes.

6.1.2 POSIX

The simplest method provided in ADIOS just does binary POSIX [/0 operations.
Currently, it does not support shared file writing or reading and has limited
additional functionality. The main purpose for the POSIX 1/0 method is to provide
a simple way to migrate a one-file-per-process 1/0 routine to ADIOS and to test
the results without introducing any complexity from MPI-I0 or other I/0
methods. Performance gains just by using this transport method are likely due to
our aggressive buffering for better streaming performance to storage. The
buffering method writes out files in BP format, which is a compact, self-describing
format.

Additional features may be added to the ADIOS POSIX transport method over
time. A new transport method with a related name, such as POSIX-ASCII, may be
provided to perform I/0 with additional features. The POSIX-ASCII example
would write out a text version of the data formatted nicely according to some
parameters provided in the XML file.

6.1.3 MPI

Many large-scale scientific simulations generate a large amount of data, spanning
thousands of files or datasets. The use of MPI-IO reduces the amount of files and
thus is helpful for data management, storage, and access.

The original MPI method was developed based on our experiments with
generating the better MPI-10 performance on the ORNL Jaguar machine. Many of
the insights have helped us achieve excellent performance on both the Jaguar XT4
machine and on the other clusters. Some of the key insights we have taken

27

advantage of include artificially serialized MPI_File_open calls and additional
timing delays that can achieve reduced delays due to metadata server (MDS)
conflicts on the attached Lustre storage system.

The adapted code takes full advantage of NxM grouping through the
coordination-communicator. This grouping generates one file per coordination-
communicator with the data stored sequentially based on the process rank within
the communicator. Figure 5 presents in the example of GTC code, 32 processes in
the same Toroidal zone write to one integrated file. Additional serialization of the
MPI_File_open calls is done using this communicator as well because each
process may have a different size data payload. Rank 0 calculates the size that it
will write, calls MPI_File_open, and then sends its size to rank 1. Rank 1 listens for
the offset to start from, adds its calculated size, does an MPI_File_open, and sends
the new offset to rank 2. This continues for all processes within the
communicator. Additional delays for performance based on the number of
processes in the communicator and the projected load on the Lustre MDS can be
used to introduce some additional artificial delays that ultimately reduce the
amount of time the MPI_File_open calls take by reducing the bottleneck at the
MDS. An important fact to be noted is that individual file pointers are retrieved by
MPI_File_open so that each process has its own file pointer for file seek and other
[/0 operations.

1 file per Toroidal zone, 64 files total. N processor ranks

>

IRankO | IRank32| |Rank64| e o o IRankN-192| lRanklNdZBI |RankN-64|

'

o o [Rank191 | [Rankhi27 | [Ranknes |

3 Rank1 | [Rank33 | [Rankes |

g Rank2 | |Rank34 | |Rankes | o o o |RankN-190 | [RankN-126 | [Rankn-s2 |

o

3l]|] IR ——T -]
[]]] ¢ e o I 10 1)

[Rank:n] |Rank63| |Rank1z7| ° |RankN-127| |RankN-65| |RankN-1 ‘

98068 000

Figure 5. Server-friendly metadata approach: offset the create/open in time

We built the MPI transport method, mainly with Lustre in mind because it has
been the primary parallel storage service we have available. However, other file-
system-specific tunings are certainly possible and fully planned as part of this
transport method system. For each new file system we encounter, a new
transport method implementation tuned for that file system, and potentially that
platform, can be developed without impacting any of the scientific code.

The MPI transport method is the most mature, fully featured, and well tested
method in ADIOS. We recommend to anyone creating a new transport method

28

that they study it as a model of full functionality and some of the advantages that
can be made through careful management of the storage resources.

6.1.4 MPI_LUSTRE

The MPI_LUSTRE method is the MPI method with stripe alignment to achieve
even greater write performance on the Lustre file system. Each writing process’
data is aligned to Lustre stripes. This results in better parallelization of the
storage elements. The drawback of using this method is that empty chunks are
created between the data sets of the separate processes in the output file, and
thus the file size is larger than with using the MPI method. The size of an empty
space is the difference between the size of the output data of one writing process
and the total size of Lustre stripes that can hold that amount of data, so that the
next writing process’ output starts aligned with another stripe. Choose the stripe
size for the output file therefore carefully, to make the empty space as small as
possible.

The following XML snippet shows how to use the MPI_LUSTRE method in ADIOS.

<method group="temperature" method="MPI_LUSTRE">
stripe_count=16,stripe_size=4194304,block_size=4194304
</method>

There are three key parameters used in this method.

* stripe_count specifies how many storage targets to use for the whole
output file. If not set, the default value is 4.

* stripe_size specifies Lustre stripe size in bytes. If not set, the default
value is 1048576 (i.e. 1 MB).

* block_size specifies the size of each I/0 write request. As an example, if
total data size to be written from one process is 800 MB at a time, and you
want ADIOS to issue twenty /0 write requests issued from one process to
Lustre during the writing, then the block_size should be 40MB.

6.1.5 MPI_AMR

The MPI_AMR method is designed to maximize write performance for
applications such as adaptive mesh refinement (AMR) on the Lustre file system.
In AMR-like applications, each processor outputs varying amount of data and
some can output very small size data. Based upon MPI_LUSTRE method,
MPI_AMR further improves the write speed by

1. aggregating data from multiple MPI processors into large chunks. This
effectively increases the size of each request and reduces the number of
I/0 requests.

2. threading the metadata operations such as file open. Users are encouraged
to call adios_open and adios_group_size API as early as possible. In case
Lustre MDS has a performance hit, the overall metadata performance

29

won't be affected. The following code snippet shows a typical way of using
this method to improve metadata performance.

adios_open(...);
adios_group size(...);

adios_write(..);
adios _write(..);
adios_close(..);

further removing communication and wide striping overhead by writing
out subfiles. Please refer to POSIX method on how to read data from
subfiles.

The following XML snippet shows how to use MPI_AMR method in ADIOS.
There are five key parameters used in this method.

<method group="tracers" method="MPI_AMR">
stripe_count=1;stripe_size=10485760;block_size=10485760;
num_aggregators=2400;merging pgs=0

</method>

stripe_count specifies how many storage targets to stripe across for each
subfile. If not set, the default value is Lustre’s default value (i.e. 4). It is
recommended that this value set to 1 in the ADIOS 1.3 release.

stripe_size specifies Lustre stripe size in bytes. If not set, the default value
is 1048576 (i.e. 1 MB).

block_size specifies the size of each /0 write request. As an example, if
block_size is 4 MB and the total data to write out is 8 MB, there will be two
[/0 write requests issued.

num_aggregators specifies the number of aggregators to use.
merging pgs is a flag that specifies whether ADIOS process groups are
merged during aggregation operation. It is recommended that this flag set
to 0 in the ADIOS 1.3 release.

Now for the selection of num_aggregators parameter, suppose you have a MPI job
with 120,000 processors and the number of aggregator is set to 2400. Then each
aggregator will aggregate the data from 120,000/2400=50 processors. Carefully
note that setting num_aggregators too small can incur out-of-memory issue.

6.1.6 PHDF5

HDF5, as a hierarchical File structure, has been widely adopted for data storage in
various scientific research fields. Parallel HDF5 (PHDF5) provides a series of
APIs to perform the /O operations in parallel from multiple processors, which

30

dramatically improves the I/0 performance of the sequential approach to
read/write an HDFS5 file. In order to make the difference in transport methods
and file formats transparent to the end users, we provide a mechanism that
write/read an HDF5 file with the same schema by keeping the same common
adios routines with only one entry change in the XML file. This method provides
users with the capability to write out exactly the same HDF5 files as those
generated by their original PHDF5 routines. Doing so allows for the same analysis
tool chain to analyze the data.

Currently, HDF5 supports two I/0 modes: independent and Collective read or
write, which can use either the MPI or the POSIX driver by specifying the dataset
transfer property list in H5Dwrite function calls. In this release, only the MPI
driver is supported in ADIOS; later on, both I/0 drivers will be supported by
changing the attribute information for PHDF5 method elements in XML.

6.1.7 NetCDF4

Another widely accepted standard file format is NetCDF, which is the most
frequently used file format in the climate and weather research communities.
Beginning with the NetCDF 4.0 release, NetCDF has added PHDF5 as a new option
for data storage called the “netcdf-4 format”. When a NetCDF4 file is opened in
this new format, NetCDF4 inherits PHDF5's parallel I/0 capabilities.

The NetCDF4 method creates a single shared filed in the “netcdf-4 format” and
uses the parallel I/0 features. The NetCDF4 method supports multiple open files.
To select the NetCDF4 method use “NC4” as the method name in the XML file.

Restrictions: Due to the collective nature of the NetCDF4 API, there are some
legal XML files that will not work with the NetCDF4 method. The most notable
incompatibility is an XML fragment that creates an array variable without a
surrounding global-bounds. Within the application, a call to adios_set_path() is
used to add a unique prefix to the variable name. A rank-based prefix is an
example.

<?xml version="1.0"?>
<adios-config host-language="C">
<adios-group name="atoms " coordination-communicator="comm">
<var name="nparam" type="integer" />
<var name="ntracked" type="integer" />
<var name="atoms " type="real" dimensions="nparam,ntracked" />
</adios-group>
<method group="atoms" method="NC4 " />
<buffer size-MB="1" allocate-time="now" />
</adios-config>

Figure 6. Example XML

31

char path[10247];

adios_init ("config.xml");

adios_open (&adios handle, "atoms", filename, "w", &comm);
sprintf (path, “node %d ”, myrank);

adios_set path(adios_handle, path);

#include "gwrite atoms.ch"

adios_close (adios_handle);

adios_finalize (myrank);

Figure 7. Example C source

This technique is an optimization that allows each rank to creates a variable of
the exact dimensions of the data being written. In this example, each rank may be
tracking a different number of atoms.

The NetCDF4 collective API expects each rank to write the same variable with the
same dimensions. The example violates both of these expectations.

Note: NetCDF4 files created in the new “netcdf-4 format” cannot be opened with
existing tools linked with NetCDF 3.x. However, NetCDF4 provides a backward
compatibility API, so that these tools can be relinked with NetCDF4. After relink,
these tools can open files in the “netcdf-4 format”.

6.1.8 Other methods

ADIOS provides an easy plug-in mechanism for users or developers to design
their own transport method. A step-by-step instruction for inserting a new 1/0
method is given in Section 13.1. Users are likely to choose the best method from
among the supported or customized methods for the running their platforms,
thus avoiding the need to verify their source codes due to the switching of 1/0
methods.

6.2 Asynchronous methods

6.2.1 Network Scalable Service Interface (NSSI)

The Network Scalable Service Interface (NSSI) is a client-server development
framework for large-scale HPC systems. NSSI was originally developed out of
necessity for the Lightweight File Systems (LWFS) project, a joint effort between
researchers at Sandia National Laboratories and the University of New Mexico.
The LWFS approach was to provide a core set of fundamental capabilities for
security, data-movement, and storage, and allow extensibility through the
development of additional services. The NSSI framework was designed to be the
vehicle to enable the rapid development of such services.

The NSSI method is composed of two components - a client method and a staging
service. The client method does not perform any file /0. Instead, all ADIOS
operations become requests to the staging service. The staging service is an

32

ADIOS application, which allows the user to select any ADIOS method for output.
Client requests fall into two categories - pass-through and cached. Pass-through
requests are requests that are synchronous on the staging service and return an
error immediately on failure. adios_open() is an example of a pass-through
request. Cached requests are requests that are asynchronous on the staging
service and return an error at a later time on failure. adios_write() is an example
of a cached request. All data cached for a particular file is aggregated and flushed
when the client calls adios_close().

Each component requires its own XML config file. The client method can be
selected in the client XML config using “NSSI” as the method. The service XML
config must be the same as the client XML config except that the method is
“NSSI_FILTER”. When the NSSI_FILTER method is selected, the “submethod”
parameter is required. The “submethod” parameter specifies the ADIOS method
that the staging service will use for output. Converting an existing XML config file
for use with NSSl is illustrated in the following three Figures.

<method method="MPI" group="atoms">max_storage_targets=160</method>

Figure 8. Example Original Client XML

<method method="NSSI" group="atoms/>

Figure 9. Example NSSI Client XML

<method method="NSSI_FILTER" group="atoms">
submethod="MPI”;subparameters="max_storage_targets=160"
</method>

Figure 10. Example NSSI Staging Service XML

After creating new config files, the application’s PBS script (or other runtime
script) must be modified to start the staging service prior to application launch
and stop the staging service after application termination. The ADIOS distribution
includes three scripts to help with these tasks.

The start.nssi.staging.sh script launches the staging service. start.nssi.staging.sh
takes two arguments - the number of staging services and an XML config file.

The create.nssi.config.sh script creates an XML file that the NSSI method uses to
locate the staging services. create.nssi.config.sh takes two arguments - the name
of the output config file and the name of the file containing a list of service contact

33

info. The service contact file is created by the staging service at startup. The
staging service uses the ADIOS_NSSI_CONTACT_INFO environment variable to
determine the pathname of the contact file.

The Kkill.nssi.staging.sh script sends a kill request to the staging service.
kill.nssi.staging.sh takes one argument - the name of the file containing a list of
service contact info (ADIOS_NSSI_CONTACT_INFO). The staging service will
gracefully terminate.

#!/bin/bash
#PBS -1 walltime=01:00:00,size=128

export RUNTIME_PATH=/tmp/work/$USER/genarray3d.$PBS_JOBID
mkdir -p $SRUNTIME_PATH
cd SRUNTIME_PATH

export ADIOS_NSSI_CONTACT_INFO=$RUNTIME_PATH/nssi_contact.xml

export ADIOS_NSSI_CONFIG_FILE=$RUNTIME_PATH /nssi_config.xml
$ADIOS_DIR/scripts/start.nssi.staging.sh 4 SRUNTIME_PATH/genarray3d.server.xml >server.log 2>&1 &
sleep 3

$ADIOS_DIR/scripts/create.nssi.config.sh $ADIOS_NSSI_CONFIG_FILE $ADIOS_NSSI_CONTACT_INFO

aprun -n 64 $ADIOS_SRC_PATH /tests/genarray/genarray $RUNTIME_PATH /test.output 4 4 4 128 128 80 >runlog

$ADIOS_DIR/scripts/Kill.nssi.staging.sh $ADIOS_NSSI_CONTACT_INFO

Figure 11. Example PBS script with NSSI Staging Service

Figure 11 is a example PBS script that highlights the changes required to launch
the NSSI staging service.

Required Environment Variables. The NSSI Staging Service requires that the
ADIOS_NSSI_CONTACT_INFO variable be set. This variable specifies the full
pathname of the file that the service uses to save its contact information.
Depending on the platform, the contact information is a NID/PID pair or a
hostname/port pair. RankO is responsible for gathering the contact information
from all members of the job and writing the contact file. The NSSI method
requires that the ADIOS_NSSI_CONFIG_FILE variable be set. This variable
specifies the full pathname of the file that contains the complete configuration
information for the NSSI method. A configuration file with contact information
and reasonable defaults for everything else can be created with the
create.nssi.config.sh script.

Calculating the Number of Staging Services Required. Remember that all
adios_write() operations are cached requests. This implies that the staging
service must have enough RAM available to cache all data written by its clients
between adios_open() and adios_close(). The current aggregation algorithm
requires a buffer equal to the size of the data into which the data is aggregated.
The start.nssi.staging.sh script launches a single service per node, so the largest
amount of data that can be cached per service is 50% of the memory on a node
minus system overhead. System overhead can be estimated at 500MB. If a node

34

has 16GB of memory, the amount of data that can be cached is 7.75GB ((16GB-
500MB)/2). To balance the load on the staging services, the number of clients
should be evenly divisible by the number of staging services.

Calculating the Number of Additional Cores Required for Staging. The NSSI
staging services run on compute nodes, so additional resources are required to
run the job. For each staging service required, add the number of cores per node
to the size of the job. If each node has 12 cores and the job requires 16 staging
services, add 192 cores to the job.

The NSSI transport method is experimental and is not included with the public
version of the ADIOS source code in this release; however it is available for use on
the XT4 and XT5 machines at ORNL.

6.2.2 DataTap

DataTap is an asynchronous data transport method built to ensure very high
levels of scalability through server-directed I/0. It is implemented as a request-
read service designed to bridge the order-of-magnitude difference between
available memories on the I/0 partition compared with the compute partition.
We assume the existence of a large number of compute nodes producing data (we
refer to them as “DataTap clients”) and a smaller number of I/0 nodes receiving
the data (we refer to them as “DataTap servers”) (see Figure 12).

Compute Node

Performance

L buffe DataTap Server
Application e\
Manager / }tream Manager
DMA
ADIOS .: Write Disk

Request|

output
- buffer /'. DataTa EVPath
DataTap Client m Receive P output
\b?&?:e/
Dafa

RDMA

buffer Read

Figure 12. DataTap architecture

Upon application request, the compute node marks up the data in PBIO format
and issues a request for a data transfer to the server. The server queues the
request until sufficient receive buffer space is available. The major cost associated
with setting up the transfer is the cost of allocating the data buffer and copying
the data. However, this overhead is small enough to have little impact on the
overall application runtime. When the server has sufficient buffer space, a remote
direct memory access (RDMA) read request is issued to the client to read the
remote data into a local buffer. The data are then written out to disk or
transmitted over the network as input for further processing in the I/O Graph.

We used the Gyrokinetic Turbulence Code (GTC) as an experimental tested for
the DataTap transport. GTC is a particle-in-cell code for simulating fusion within
tokamaks, and it is able to scale to multiple thousands of processors. In its default
[/0 pattern, the dominant 1/0 cost is from each processor writing out the local

35

particle array into a file. Asynchronous I/0 reduces this cost to just a local
memory copy, thereby reducing the overhead of I/0 in the application.

The DataTap transport method is experimental and is not included with the
public version of the ADIOS source code in this release; however it is available for
use on the XT4 and XT5 machines at ORNL.

6.2.3 Decoupled and Asynchronous Remote Transfers (DART)

DART is an asynchronous I/0 transfer method within ADIOS that enables low-
overhead, high-throughput data extraction from a running simulation. DART
consists of two main components: (1) a DARTClient module and (2) a
DARTServer module. Internally, DART wuses RDMA to implement the
communication, coordination, and data transport between the DARTClient and
the DARTServer modules.

The DARTClient module is a light library that provides the asynchronous I/0 API.
It integrates with the ADIOS layer by extending the generic ADIOS data transport
hooks. It uses the ADIOS layer features to collect and encode the data written by
the application into a local transport buffer. Once it has collected data from a
simulation, DARTClient notifies the DARTServer through a coordination channel
that it has data available to send out. DARTClient then returns and allows the
application to continue its computations while data are asynchronously extracted
by the DARTServer.

The DARTServer module is a stand-alone service that runs independently of a
simulation on a set of dedicated nodes in the staging area. It transfers data from
the DARTClient and can save it to local storage system, e.g., Lustre file system,
stream it to remote sites, e.g.,, Ewok cluster, or serve it directly from the staging
area to other applications. One instance of the DARTServer can service multiple
DARTClient instances in parallel. Further, the server can run in cooperative mode
(i.e., multiple instances of the server cooperate to service the clients in parallel
and to balance load). The DARTServer receives notification messages from the
clients, schedules the requests, and initiates the data transfers from the clients in
parallel. The server schedules and prioritizes the data transfers while the
simulation is computing in order to overlap data transfers with computations, to
maximize data throughput, and to minimize the overhead on the simulation.

DART is an asynchronous method available in ADIOS, that can be selected by
specifying the transport method in the external ADIOS XML configuration file as
“DART”.

<method priority="3" method="DART" group="fluxdiag" />

Figure 13. Select DART as a transport method in the configuration file example.

36

To make use of the DART transport, an application job needs to also run the
DARTServer component together with the application. The server should be
configured and started before the application as a separate job in the system. For
example:

aprun -n $SPROC ./dart_server -s $SPROC -c $PROC &> log.server &

Figure 14. Start the server component in a job file first.

The variable $SPROC represents the number of server instances to run, and the
variable $PROC represents the number of application processes. For example if
the job script runs a coupling scenario with two applications that run on 128 and
432 processors respectively, then the value of $PROC is 560. The ‘&’ character at
the end of the line would place the ‘aprun’ command in the background, and will
allow the job script to continue and run the other applications. The server
processes produce a configuration file, i.e., ‘conf that is used by the DARTClient
component to connect to the servers. This file contains the ‘nid’ (network
identifier), and ‘pid’ (process identifier) of the master server, which coordinates
the client registration and discovery process. The job script should wait for the
servers to start-up and produce the ‘conf file, which it can then export to
environment variables, e.g., P2TNID, and P2TPID. The clients can use these
variables to connect to the server. Exporting the master server identifier through
environment variable prevents the larger number of clients from accessing the
file system at once.

while [! -f conf]; do
echo “Waiting for servers to start-up”
sleep 2s

done

while read line; do
export set “${line}”
done < conf

Figure 15. Wait for server start-up completion and export the configuration to
environment variables.

The server component will terminate automatically when the applications will
finish. The DARTClient components will send an unregister message to the server
before they finish execution, and the servers will exit after they receive $PROC
unregister messages.

37

The DART transport method is experimental and is not included with the public
version of the ADIOS source code in this release; however it is available for use on
the XT4 and XT5 machines at ORNL.

6.3 Other research methods at ORNL

6.3.1 MPI-CIO

MPI-IO defines a set of portable programming interfaces that enable multiple
processes to have concurrent access to shared files [1]. It is often used to store
and retrieve structured data in their canonical order. The interfaces are split into
two types: collective 1/0 and independent 1/0. Collective functions require all
processes to participate. Independent 1/0, in contrast, requires no process
synchronization.

Collective 1/0 enables process collaboration to rearrange 1/0 requests for better
performance [2,3]. The collective I/0 method in ADIOS first defines MPI fileviews
for all processes based on the data partitioning information provided in the XML
configuration file. ADIOS also generates MPI-10 hints, such as data sieving and I/0
aggregators, based on the access pattern and underlying file system
configuration. The hints are supplied to the MPI-IO library for further
performance enhancement. The syntax to describe the data-partitioning pattern
in the XML file uses the <global-bounds dimensions offsets> tag, which defines
the global array size and the offsets of local subarrays in the global space.

The global-bounds element contains one or more nested var elements, each
specifying a local array that exists within the described dimensions and offset.
Multiple global-bounds elements are permitted, and strictly local arrays can be
specified outside the context of the global-bounds element.

As with other data elements, each of the attributes of the global-bounds element
is provided by the adios_write call. The dimensions attribute is specified by all
participating processes and defines how big the total global space is. This value
must agree for all nodes. The offset attribute specifies the offset into this global
space to which the local values are addressed. The actual size of the local element
is specified in the nested var element(s). For example, if the global bounds
dimension were 50 and the offset were 10, then the var(s) nested within the
global-bounds would all be declared in a global array of 50 elements with each
local array starting at an offset of 10 from the start of the array. If more than one
var is nested within the global-bounds, they share the declaration of the bounds
but are treated individually and independently for data storage purposes.

This research method is installed on Jaguar at ORNL only but is not part of the
public release.

6.3.2 MPI-AIO
The initial implementation of the asynchronous MPI-I0 method (MPI-AIO) is
patterned after the MPI-I0 method. Scheduled metadata commands are

38

performed with the same serialization of MPI_Open calls as given in Figure 5 on
page 28.

The degree of 1/0 synchronicity depends on several factors. First, the ADIOS
library must be built with versions of MPI that are built with asynchronous 1/0
support through the MPI_File_iwrite, MPI_File_iread, and MPI_Wait calls. If
asynchronous [/0 is not available, the calls revert to synchronous (read blocking)
behavior identical to the MPI-IO method described in the previous section.

Another important factor is the amount of available ADIOS buffer space. In the
MPI-IO method, data are transported and ADIOS buffer allocation is reclaimed for
subsequent use with calls to adios_close (). In the MPI-AIO method, the “close”
process can be deferred until buffer allocation is needed for new data. However, if
the buffer allocation is exceeded, the data must be synchronously transported
before the application can proceed.

The deferral of data transport is key to effectively scheduling asynchronous 1/0
with a computation. In ADIOS version 1.3, the application explicitly signals that
data transport must be complete with intelligent placement of the adios_close ()
call to indicate when I/0 must be complete. Later versions of ADIOS will perform
[/0 between adios_begin_calculation and adios_end_calculation calls, and
complete I/0 on adios_end_iteration calls.

This research module is not released in ADIOS 1.3.

39

7 ADIOS Read API

7.1 Introduction

We can read in any variable and any sub-array of a variable with the read API as
well as the attributes. There were three design choices when creating this API:

1. Groups in the BP files are handled separately

Most BP files contain a single group and the variables and attributes in that
group have their paths so it looks like they are organized into a hierarchy. If a
BP file contains more than one groups, the second group can have a variable
with the same path and name as a variable in the first group. We choose not
to add the name of the groups to the root of all paths because that is
inconvenient for the majority of the BP files containing a single group.

2. Dimensions of arrays are reported differently for C and Fortran

When reading from a different language than writing, the storage order of
the dimensions is the opposite. Instead of transposing multidimensional
arrays in memory to order the data correctly at read time, simply the
dimensions are reported reversed.

3. The C API returns structures filled with information while the Fortran API
returns information in individual arguments

Since the BP file format is metadata rich, and the metadata is immediately
accessible in the footer of the file, we can have an easy to use API with few
functions. The open function returns information on the number of elements
and timesteps and the list of groups in the file. The group open returns the
list of variables and attributes in the group. The inquiry of a variable returns
not just the type and dimensionality of a variable but also the global
minimum and maximum of it without reading in the content of the variable
from the file.

The read API library has two versions. The MPI version should be used in parallel
programs. Only the rank=0 process reads the footer of the file and broadcasts it to
the other processes in adios_fopen(). File access is handled through MPI-IO
functions. Sequential programs can use any of the two versions but if you do not
want dependency on MPI, link your program with the non-MPI version, which
uses POSIX I/0 functions. In this case, you need to compile your code with the
-D_NOMPI option. There is no difference in performance or functionality in the
two versions (in sequential applications).

Note that the write API contains the adios_read() function, which is useful to read
in data from the same number of processors as the data was written from, like
handling checkpoint/restart data (see Section 3.1.2.5.). However, if you need to

40

read in from a different number of processors or to read in only a subset of an
array variable, you need to use this read API.

7.2

Read C API description

Note: for Fortran, please read section 7.4 on page 46.

The sequence of reading in a variable from the BP file is

open file

open a group

inquiry the variable to get type and dimensions
allocate memory for the variable

read in variable (whole or part of it)

free varinfo data structure

close group

close file

Example codes using the C API are

- examples/C/read_all/read_all.c
- examples/C/global-array/adios_read_global

7.2.1 adios_errmsg / adios_errno

int

adios_errno

char * adios_errmsg /()

If an error occurrs during the call of a C api function, it either returns NULL
(instead of a pointer to an allocated structure) or a negative number. It also sets
the integer adios errno variable (the negative return value is actually -1 times
the errno value). Moreover, it prints the error message into an internal buffer,
which can be retrieved by adios errmsg ().

Note that adios_errmsg() returns the pointer to the internal buffer instead of
duplicating the string, so refrain from writing anything into it. Also, only the last
error message is available at any time.

7.2.2 adios_fopen

ADIOS FILE * adios fopen (const char * fname, MPI Comm comm)

ADIOS FILE is a struct of
uint64_t fh; File handler
int groups_count; Number of adios groups in file
int vars_count; Number of variables in all groups
int attrs_count; Number of attributes in all groups
int tidx_start; First timestep in file, usually 1

41

int ntimesteps; Number of timesteps in file.
There is always at least one timestep

int version; ADIOS BP version of file format
uint64_t file_size; Size of file in bytes
int endianness; 0: little endian, 1: big endian

You do not need to care about this.

char ** group_namelist; Names of the adios groups in the file
(cf. groups_count)

The array for the list of group names is allocated in the function and is freed in
the close function.

If you use the MPI version of the library, pass the communicator, which is the
communicator of all processes that call the open function. Rank=0 process
broadcasts the metadata to the other processes so that we avoid opening the file
from many processes at once. If you use the non-MPI version of the library, just
pass on an arbitrary integer value, which is not used at all.

7.2.3 adios_fclose

int adios fclose (ADIOS FILE *fp)

You are expected to close a file when you do not need it anymore. This function
releases a lot of internal memory structures.

7.2.4 adios_gopen / adios_gopen_byid
ADIOS GROUP * adios_gopen (ADIOS FILE *fp, const char * grpname)
ADIOS GROUP * adios gopen byid (ADIOS FILE *fp, int grpid)

You need to open a group to get access to its variables and attributes. You can
open a group either by its name returned in the ADIOS_FILE struct’s
group_namelist list of strings or by its index, which is the index of its name in this
list of names.

You can have several groups open at the same time.

ADIOS_GROUP is a struct of

uint64_t gh; Group handler

int grpid; group index (0..ADIOS_FILE.groups_count-1)
int vars_count; Number of variables in this adios group

char ** var_namelist; Variable names in a char* array

int attrs_count; Number of attributes in this adios group
char ** attr_namelist; Attribute names in a char* array
ADIOS_FILE * fp; pointer to the parent ADIOS_FILE struct

42

The arrays for the list of variable names and attribute name are allocated in the
function and are freed in the group close function.

Note that one can modify the ADIOS_GROUP’s namelists because they are not
used in the discovery of the variables. However, in index-based queries below, the
index of the variable is the index of the variable’s position in the original order of
the list. If one sorts this list for ordered printouts, one need to remember the
original indices of the variables or to identify the variables by name.

7.2.5 adios_gclose
int adios_gclose (ADIOS GROUP *gp)

You need to close the group when you do not need it anymore.

7.2.6 adios_inqg_var / adios_ing_var_byid
ADIOS VARINFO * adios_ing _var (ADIOS GROUP *gp, const char * varname)
ADIOS VARINFO * adios_ing var byid (ADIOS GROUP *gp, int varid)

This function should be used if you want to discover the type and dimensionality
of a variable or want to get the minimum/maximum/average/standard_deviation
values without reading in the data. You can refer to the variable with its name
(full path) in the ADIOS_GROUP struct’s var_namelist or by the index in that list.

ADIOS VARINFO structure is allocated in the function but there is no
corresponding closing function, therefore user has to free the ADIOS_VARINFO*
pointer yourself when you do not need it anymore by using the
adios_free_varinfo() function.

ADIOS _VARINFO is a struct of

int grpid; group index (0..ADIOS_FILE.groups_count-1)
int varid; variable index (0..ADIOS_GROUP.var_count-1)
enum ADIOS_DATATYPES type; type of variable
int ndim; number of dimensions, 0 for scalars
uint64_t * dims; size of each dimension
int timedim; -1: variable has no timesteps in file,
>=0: which dimension is time
void * wvalue; value of a scalar variable, NULL for array.
void * gmin; minimum value in an array variable.
void * gmax; maximum value of an array variable
void * gavg; average value of an array variable
void * gstd_dev; standard deviation value of an array variable

(over all timesteps, for scalars they are = value)

void * mins; minimum per each timestep
void * maxs; maximum per each timestep
void * avgs; average per each timestep

43

void * std_dev; standard deviation per each timestep
(array of timestep elements)

struct ADIOS_HIST {
uint32_t num_breaks; number of break points of the histogram

double min; minimum of binning boundary
double max; maximum of binning boundary
double * breaks; break points of the histogram

uint32_t ** frequencies; histogram values per timestep
uint32_t * gfrequencies; histogram values for all timesteps
} *hist; NULL if histogram binning interval was not
formed correctly at write time

For complex numbers, the statistics in ADIOS_VARINFO, like gmin, gavg, std_devs
etc, are of base type double. They also have an additional dimension that stores
the statistics for the magnitude, the real part, and the imaginary part of the
complex number, individually. For example, gmin[0] holds the overall minimum
value of the magnitude of the complex numbers. gmin[1] and gmin [2] contain the
global minimums for the real and the imaginary parts, respectively.

7.2.7 adios_free_varinfo
void adios free varinfo (ADIOS VARINFO *cp)

Frees up the ADIOS_VARINFO* structure returned by adios_inq_var().

7.2.8 adios_read_var / adios_read_var_byid

int64 t adios read var (ADIOS GROUP * gp,
const char * varname,
const uint64 t * start,
const uint64 t * count,
void * data)

int64 t adios read var byid (ADIOS GROUP * gp,
int wvarid,
const uint64 t * start,
const uint64 t * count,
void * data)

This function is used to read in the content of a variable, or a subset of it. You
need to allocate memory for receiving the data before calling this function. The
subset (or the entire set) is defined by the start and count in each dimension. The
start and count arrays must have as many elements as many dimensions the
variable has (i.e. ADIOS_VARINFO.ndim). Start contains the starting offsets for
each dimension and count contains the number of elements to read in a given
dimension. If you want to read in the entire variable, start should be an array of
zeros and count should equal to the dimensions of the variable.

44

Note that start and count is related to the number of elements in each dimension,
not the number of bytes needed for storage. When allocating the data array,
multiply the total number of elements with the size of one element. If you need to
be generic in this calculation, you can use the adios type size() function to
get the size of one element of a given type (cf. ADIOS_VARINFO.type).

7.2.9 adios_get_attr / adios_get_attr_byid

int adios _get attr (ADIOS GROUP * gp,
const char * attrname,
enum ADIOS DATATYPES * type,
int * size,
void ** data)
int adios _get attr byid (ADIOS GROUP * gp,
int attrid,
enum ADIOS DATATYPES * type,
int * size,
void ** data)

This function retrieves an attribute including its type, memory size and its value.
An attribute can only be a scalar value or a string. Memory is allocated in the
function to store the value. The allocated size is returned in the size argument.

This function does not read the file usually. The attribute’s value is stored in the
footer and is already in the memory after the file is opened. However, an attribute
can refer to a scalar (or string) variable too. In this case, this function calls
adios_read_var internally, so the file will be accessed to read in that scalar.

7.2.10 adios_type_to_string
const char * adios type to string (enum ADIOS DATATYPES type)

This function returns the name of a given type.

7.2.11 adios_type_size
int adios_type size(enum ADIOS DATATYPES type, void *data)

This function returns the memory size of one data element of an adios type. If the
type is adios_string, and the second argument is the string itself, it returns
strlen(data)+1. For other types, data is not used and the function returns the size
occupied by one element.

7.3 Time series analysis APl Description:

ADIOS provides APIs to perform time-series analysis like correlation and
covariance on statistics collected in the BP file. As described in Section 7.2.6,
adios_ing_var populates characteristics, such as minimum, maximum, average,
standard deviation values for an array for each timestep. The following analysis
function can be used with ADIOS_VARINFO objects previously defined. This can
be performed only for a variable that has a time index.

45

7.3.1 adios_stat_cor / adios_stat_cov
This function calculates Pearson correlation/covariance of the characteristic data
of vix and characteristic data of viy.

double adios stat cor (ADIOS VARINFO * vix,
ADIOS VARINFO * viy,

char * characteristic,
uint32 t time start,
uint32 t time end,
uint32 t lag)

double adios stat cov (ADIOS VARINFO * vix,
ADIOS VARINFO * viy,

char * characteristic,
uint32 t time start,
uint32 t time end,
uint32 t lag)

Required:
* vix - an ADIOS_VARINFO object
Optional:
* viy - either an ADIOS_VARINFO object or NULL

* characteristics - can be any of the following pre-computed statistics:
"minimum" or "maximum" or "average" or "standard deviation"
(alternatively, "min" or "max" or "avg" or "std_dev" can be given)

* time_start - specifies the start time from which correlation/covariance
should be performed

* time_end - specifies the end time up to which correlation/covariance
should be performed

time_start and time_end should be within the time bounds of vix and viy
with time_start < time_end

If time_start and time_end = 0, the entire range of timesteps is considered.
In this case, vix and viy should have the same number of timesteps.

* lag-ifviyis NULL, and if lag is given, correlation is performed between the
data specified by vix, and vix shifted by 'lag' timesteps. If viy is not NULL,
lag is ignored.

7.4 Read Fortran API description
The Fortran API does not deal with the structures of the C api rather it requires
several arguments in the function calls. They are all implemented as subroutines

46

like the write Fortran API and the last argument is an integer variable to store the
error code output of each function (0 meaning successful operation).

An example code can be found in the source distribution as
tests/bp read/bp read f.F90.

The most important thing to note is that some functions need integer*8 (scalar or
array) arguments. Passing an integer*4 array from your code leads to fatal errors.
Please, double check the arguments of the function calls.

Due to the lack of structures and because the Fortran API does not allocate
memory for them, you have to inquiry the file after opening it and to inquiry the
group after opening it. You also have to inquiry an attribute to determine the
memory size and allocate space for it before retrieving it.

Where the API function returns a list of names (inquiry file or inquiry group), you
have to provide enough space for them using the counts returned by the
preceding open call.

Here is the list of the Fortran subroutines. The GENERIC word indicates that you
can use that function with any data type at the indicated argument. Since
Fortran90 does not allow defining functions that can take any type of argument,
we do not provide an F90 module for this API. The functions are actually defined
in C and due to the lack of compiler checking, you can pass any type of array or
variable where a GENERIC array is denoted.

subroutine adios errmsg (msg)
character (*), intent (out) :: msg
end subroutine

subroutine adios_ fopen (fp, fname, comm, groups count, err)

integer*8, intent (out) :: fp
character (*), intent (in) :: fname
integer, intent (in) :: comm
integer, intent (out) :: groups count
integer, intent (out) :: err

end subroutine

subroutine adios fclose (fp, err)
integer*8, intent (in) i fp
integer, intent (out) :: err

end subroutine

subroutine adios _ing file (fp, vars_count,
attrs count, tstart, ntsteps,
gnamelist, err)

integer*8, intent (in) :: fp

integer, intent (out) :: vars count
integer, intent (out) :: attrs count
integer, intent (out) :: tstart

47

integer,
character (*),
integer,

end subroutine

subroutine adios_ gopen

integer*8,
integer*8,
character (*),
integer,
integer,
integer,

end subroutine

subroutine adios_gclose

integer*8,
integer,
end subroutine

intent (out)
dimension (*),
intent (out)

(fp, gp,
attrs co
intent (in)
intent (out)
intent (in)
intent (out)
intent (out)
intent (out)

o~ o~ o~ o~

(gp, err
intent (in)
intent (out)

ntsteps
intent (inout)
err

gnamelist

grpname,

unt, err)
fp
gp
grpname

vars_count,

vars_count
attrs count
err

)
gp
err

subroutine adios ing group (gp, vnamelist, anamelist, err)
integer*8, intent (in) gp
character (*), dimension(*), intent (inout) vnamelist
character (*), dimension(*), intent (inout) anamelist
integer, intent (out) err
end subroutine
subroutine adios ing var (gp, varname, vartype, ndim,
dims, timedim, err)
integer*8, intent (in) gp
character (*), intent (in) varname
integer, intent (out) vartype
integer, intent (out) ndim
integer*8, dimension(*), intent (out) dims
integer, intent (out) timedim
integer, intent (out) err
end subroutine
subroutine adios read var (gp, varname, start, count,
data, read bytes)
integer*8, intent (in) gp
character (*), intent (in) varname
integer*8, dimension(*), intent (in) start
integer*8, dimension(*), intent (in) count
GENERIC, dimension(*), intent (inout) data
integer*8, intent (out) read bytes
! read bytes < 0 indicates error
end subroutine
subroutine adios get varminmax (gp, varname, value, gmin,
gmax, mins, maxs, err)
integer*8, intent (in) gp

48

character (*), intent (in) varname
GENERIC, intent (out) :: wvalue
GENERIC, intent (out) :: gmin

GENERIC, intent (out) :: gmax

GENERIC, dimension(*), intent (inout) :: mins
GENERIC, dimension(*), intent (inout) :: maxs
integer, intent (out) :: err

end subroutine

subroutine adios ing attr (gp, attrname, attrtype,
attrsize, err)

integer*8, intent (in) :: gp
character (*), intent (in) :: attrname
integer, intent (out) :: attrtype
integer, intent (out) :: attrsize
integer, intent (out) :: err

end subroutine

subroutine adios get attr intl (gp, attrname, attr, err)

integer*8, intent (in) :: gp

character (*), intent (in) :: attrname
GENERIC, dimension(*), intent (inout) :: attr
integer, intent (out) :: err

end subroutine

7.5 Compiling and linking applications
In a C code, include the adios_read.h header file.

In a Fortran 90 code, you do not need to include anything. It is strongly
recommended to double check the integer parameters because the read API
expects integer*8 arguments at several places and providing an integer will break
your code and then debugging it proves to be very difficult.

If you want to use the MPI version of the library, then link your (C or Fortran)
application with -ladiosread.

If you want to use the non-MPI version of the library, you need to compile your
code with the -D_NOMPI option and link your application with
-ladiosread_nompi.

8 BP file format

8.1 Introduction

This chapter describes the file structure of BP, which is the ADIOS native binary
file format, to aid in understanding ADIOS performance issues and how files
convert from BP files to other scientific file formats, such as netCDF and HDF5.

49

To avoid the file size limitation of 2 gigabytes by using a signed 32-bit offset
within its internal structure, BP format uses an unsigned 64-bit datatype as the
file offset. Therefore, it is possible to write BP files that exceed 2 gigabytes on

platforms that have large file support.

By adapting ADIOS read routines based on the endianness indication in the file
footer, BP files can be easily portable across different machines (e.g., between the
Cray-XT4 and BlueGene).

To aid in data selection, we have a low-overhead concept of data characteristics
to provide an efficient, inexpensive set of attributes that can be used to identify

data sets without analyzing large data content.

As shown in Figure 16, the BP format comprises a series of process groups and
the file footer. The remainder of this chapter describes each component in detail
and helps the user to better understand (1) why BP is a self -describing and
metadata-rich file format and (2) why it can achieve high 1/0 performance on
different machine infrastructures.

----------- € Start of file

Process groups

Process groups index

‘ - Indices
Varsindex

f/
/
/
|
|
|
\
\ Attributes index
\\
\
\.

offset of pgs idx

o footer

offset of vars index
offset of atts index
version

End of file —

Figure 16. BP file structure

8.2 Footer

One known limitation of the NetCDF format is that the file contents are stored in a
header that is exactly big enough for the information provided at file creation.
Any changes to the length of that data will require moving data. To avoid this
cost, we choose to employ a foot index instead. We place our version identifier
and the offset to the beginning of the index as the last few bytes of our file,
making it simple to find the index information and to add new and different data
to our files without affecting any data already written.

8.2.1 Version

We reserve 4 bytes for the file version, in which the highest bit indicates
endianness. Because ADIOS uses a fixed-size type for data, there is no need to
store type size information in the footer.

50

8.2.2 Offsets of indices

In BP format, we store three 8-byte file offsets right before the version word,
which allows users or developers to quickly seek any of the index tables for
process groups, variables, or attributes.

8.2.3 Indices

8.2.3.1 Characteristics

Before we dive into the structures of the three index tables mentioned earlier,
let’s first take a look what characteristic means in terms of BP file format. To be
able to make a summary inspection of the data to determine whether it contains
the feature of greatest interest, we developed the idea of data characteristics. The
idea of data characteristics is to collect some simple statistical and/or analytical
data during the output operation or later for use in identifying the desired data
sets. Simple statistics like array minimum and maximum values can be collected
without extra overhead as part of the I/O operation. Other more complex
analytical measures like standard deviations or specialized measures particular
to the science being performance by require more processing. As part of our BP
format, we store these values not only as part of data payload, but also in our
index.

8.2.3.2 PG Index table

As shown in Figure 17, the process group (PG) index table encompasses the count
and the total length of all the PGs as the first two entries. The rest of the tables
contain a set of information for each PG, which contains the group name
information, process ID, and time index. The Process ID specifies which process a
group is written by. That process will be the rank value in the communicator if
the MPI method is used. Most importantly, there is a file-offset entry for each PG,
allowing a fast skip of the file in the unit of the process group.

51

: ___________ : Pgs count
' Processgroups ! Pgs length Process
1 1 group 1
] 1 Length of group
Length of name
Process ID Process
Pgs index Time Index group 2
Offset to pg 1
Length of group 1 .
Length of name : :
Varsindex Process ID : 1
Time Index \ :
Offset to pg 2 : :
' 1
Attribute index 1 1
Length of group : :
offset of pgs idx Length of name ' |
offset of vars index Process ID
offset of atts index Time Index Process
o group n
MELSIon Offset to pg n

Figure 17. Group index table

8.2.3.3 Variables index table

The variables index table is composed of the total count of variables in the BP file,
the size of variables index table, and a list of variable records. Each record
contains the size of the record and the basic metadata to describe the variable. As
shown in Figure 18, the metadata include the name of the variable, the name of
the group the variable is associated with, the data type of the variable, and a
series of characteristic features. The structure of each characteristic entry
contains an offset value, which is addressed to the certain occurrence of the
variable in the BP file. For instance, if n processes write out the variable “d” per
time step, and m iterations have been completed during the whole simulation,
then the variable will be written (m x n) times in the BP file that is produced.
Accordingly, there will be the same number of elements in the list of
characteristics. In this way, we can quickly retrieve the single dataset for all time
steps or any other selection of time steps. This flexibility and efficiency also apply
to a scenario in which a portion of records needs to be collected from a certain
group of processes.

52

Var entry length

Length of name

Var member ID

Characteristic id

Group name

Offset to payload

Length of name

min

Var name

Max

value

Local dim

Global dim

Local offset

8.2.3.4 Attributes index table
Since an attribute can be considered to be a special type of variable, its index
table in BP format is organized in the same way as a variables index table and

Length of path
N Var path ranks
s Dimensions length
Varslength datatype imensio 8
Varl Characteristics count Ch.arade“mc)
_dims (0]
Var2 Characteristics length
e —
Characteristics [0] Characteristic
...... fl _dims [ranks-1)
et Characteristics [cnt-1] : |
| |
|
' I
' I
: I
I |
| |
|
Offset to payload

Figure 18. Variables index table

Varl

Varl

Var (1]

Pg 1

Pg 2

Pgn

therefore supports the same types of features mentioned in the previous sections.

8.3 Process Groups
One of the major concepts in BP format is what is called “process group” or PG.
The BP file format encompasses a series of PG entries and the BP file footer. Each
process group is the entire self-contained output from a single process and is
written out independently into a contiguous disk space. In that way, we can
enhance parallelism and reduce coordination among processes in the same
communication group. The data diagram in Figure 19 illustrates the detailed
content in each PG.

53

Host language Fortran(y/n)

Length of name

name

Coordination var member
D

Length of timestep name

Method ID

Time step (int)

Timestep name

Method params
Method (0] - length

Process group methods count
length

methods length

...... ‘ Method params
Process group

header methods list M Method [cnt-1)

Vars count Length of var

Var (0]
Vars length - Member 1D
""" Length of name
List of vars Var [cnt-1] name
Length of path
Attrs count € P Count (ranks)
path
Dimensions length Local dim Var_id
Attrs length datatype d 0!
imensions(0) Global dim = rank
X Is_dimension (y/n)
List of attrs Attr [0] : : o Local offset time_index
- | .. Dimensions dimensions[cnt-1)
characteristics [
‘ | Attr [ent-1) Characteristics count
payload

Characteristics length

Characteristics id

characteristics[0]

Characteristic length

nten
| characteristics[cnt-1] _| content

Figure 19. Process group structure
8.3.1 PG header

8.3.1.1 Unlimited dimension

BP format allows users to define an unlimited dimension, which will be specified
as the time-index in the XML file. Users can define variables having a dimension
with undefined length, for which the variable can grow along that dimension. PG
is a self-contained, independent data structure; the dataset in the local space per
each time step is not reconstructed at the writing operations across the processes
or at time steps. Theoretically, PGs can be appended to infinity; they can be added
one after another no matter how many processes or time steps take place during
the simulation. Thus ADIOS is able to achieve high I/0 performance.

8.3.1.2 Transport methods

One of the advantages of organizing output in terms of groups is to categorize all
the variables based on their /0 patterns and logical relationships. It provides
flexibility for each group to choose the optimized transport method according to
the simulation environment and underlying hardware configuration or the
transport methods used for a performance study without even changing the
source code. In PG header structure, each entry in the method list has a method

54

ID and method parameters, such as system-tuning parameters or underneath
driver selection.

8.3.2 Vars list
8.3.2.1 Var header

8.3.2.1.1 Dimensions structure

Internal to bp is sufficient information to recreate any global structure and to
place the local data into the structure. In the case of a global array, each process
writes the size of the global array dimensions, specifies the local offsets into each,
and then writes the local data, noting the size in each dimension. On conversion
to another format, such as HDFS5, this information is used to create hyperslabs for
writing the data into the single, contiguous space. Otherwise, it is just read back
in and used to note where the data came from. In this way, we can enhance
parallelism and reduce coordination. All of our parallel writes occur
independently unless the underlying transport specifically requires collective
operations. Even in those cases, the collective calls are only for a full buffer write
(assuming the transport was written appropriately) unless there is insufficient
buffer space.

As shown in Figure 19, the dimension structure contains a time index flag, which
indicates whether this variable has an unlimited time dimension. Var_id is used to
retrieve the dimension value if the dimension is defined as variable in the XML
file; otherwise, the rank value is taken as the array dimension.

8.3.2.2 Payload

Basic statistical characteristics give users the advantage for quick data inspection
and analysis. In Figure 19, redundant information about characteristics is stored
along with variable payload so that if the characteristics part in the file footer gets
corrupted, it can still be recovered quickly. Currently, only simple statistical traits
are saved in the file, but the characteristics structure will be easily expanded or
modified according to the requirements of scientific applications or the analysis
tools.

8.3.3 Attributes list

The layout of the attributes list (see Figure 20) is very similar to that of the
variables. However, instead of containing dimensional structures and physical
data load, the attribute header has an is_var flag, which indicates either that the
value of the attribute is referenced from a variable by looking up the var_id in the
same group or that it is a static value defined in the XML file.

55

Length of var
Member ID
Length of name
Attr 0] gt
"'ﬁ name
path
Attr [cnt-1] e isVar(y/n) '\ Dataty
atatype
Length of value
value

Figure 20. Attribute entry structure

56

9 Utilities

9.1 adios_lint

We provide a verification tool, called adios_lint, which comes with ADIOS. It can
help users to eliminate unnecessary semantic errors and to verify the integrity of
the XML file. Use of adios_lint is very straightforward; enter the adios_lint
command followed by the config file name.

9.2 bpls

The bpls utility is used to list the content of a BP file or to dump arbitrary
subarrays of a variable. By default, it lists the variables in the file including the
type, name, and dimensionality. Here is the description of additional options (use
bpls -h to print help on all options for this utility).

-1 Displays the global statistics associated with each array (minimum,
maximum, average and standard deviation) and the value of each scalar.
Note that the detailed listing does not have extra overhead of processing
since this information is available in the footer of the BP file.

-t When added to the -1 option, displays the statistics associated with the
variables for every timestep.

-p Dumps the histogram binning intervals and their corresponding
frequencies, if histograms were enabled while writing the bp file. This
option generates a “<variable-name>.gpl” file that can be given to the
‘enuplot’ program as input.

-a Lists attributes besides the variables
-A Lists only the attributes

-r Sorts the full listing by names. Name masks to list only a subset of the
variables/attributes can be given like with the -Is command or as regular
expressions (with -e option).

-v Verbose. It prints some information about the file in the beginning before
listing the variables.

-S Dump byte arrays as strings instead of with the default numerical listing.
2D byte arrays are printed as a series of strings.

Since bpls is written in C, the order of dimensions is reported with row-major
ordering, i.e., if Fortran application wrote an NxM 2D variable, bpls reports it as
an MxN variable.

-d Dumps the values of the variables. A subset of a variable can be dumped by
using start and count values for each dimension with -s and -c option, e.g,,

57

-s “10,20,30” -c “10,10,10” reads in a 10x10x10 sub-array of a variable
starting from the (10,20,30) element. Indices start from 0. As in Python, -1
denotes the last element of an array and negative values are handled as
counts from backward. Thus, -s “-1,-1” -c “1,1” reads in the very last
element of a 2D array, or -s “0,0” -c “1,-1” reads in one row of a 2D array.
Or -s “1,1” -c¢ “-2,-2” reads in the variable without the edge elements (row
0, colum 0, last row and last column).

Time is handled as an additional dimension, i.e., if a 2D variable is written several
times into the same BP file, bpls lists it as a 3D array with the time dimension
being the first (slowest changing) dimension.

In the example below, a 4 process application wrote a 4x4 array (each process
wrote a 2x2 subset) with values from 0 to 15 once under the name /var/int_xy
and 3 times under the name /var/int_xyt.

$ bpls -latv g 2x2 2x2 t3.bp
File info:

of groups: 1

of variables: 11

of attributes: 7

time steps: 3 starting from 1
file size: 779 KB

bp version: 1

endianness: Little Endian

Group genarray:

integer /dimensions/X scalar = 4

integer /dimensions/Y scalar = 4

integer /info/nproc scalar = 4

string /info/nproc/description attr = "Number of writers"

integer /info/npx scalar = 2

string /info/npx/description attr = "Number of processors
in x dimension"

integer /info/npy scalar = 2

string /info/npy/description attr = "Number of processors
in y dimension"

integer /var/int_xy {4, 4} =0 / 15

string /var/int xy/description attr = "2D array with 2D
decomposition"

integer /var/int_xyt {3, 4, 4}y = 0 / 15

string /var/int xyt/description attr = "3D array with 2D

decomposition with time in 3rd dimension"

Figure 21. bpls utility

The content of /var/int_xy can be dumped with

$ bpls g 2x2 2x2 t3.bp -d -n 4 var/int xy
integer /var/int xy {4, 4}

58

O O O o

)
)
)
)

~ N 0~ N

(0
(1
(2
(3

The “central” 2x2 subset of /var/int_xy can be dumped with

$ bpls g 2x2 2x2 t3.bp -d -s "1,1" -c "2,2" -n 2 var/int xy

integer /var/int xy {4, 4}
slice (1:2, 1:2)
(1,1) 5 6
(2,1) 9 10

The last element of /var/int_xyt for each timestep can be dumped with

$ bpls g 2x2 2x2 t3.bp -d -s "0,-1,-1" -¢c "-1,1,1" -n 1 var/int xyt

integer /var/int xyt {3, 4, 4}
slice (0:2, 3:3, 3:3)
(0,3,3) 15
(1,3,3) 15
(2,3,3) 15
9.3 bpdump

The bpdump utility enables users to examine the contents of a bp file more
closely to the actual BP format than with bpls and to display all the contents or
selected variables in the format on the standard output. Each writing process’
output is printed separately.

It dumps the bp file content, including the indexes for all the process groups,
variables, and attributes, followed by the variables and attributes list of
individual process groups (see Figure 22).

bpdump [-d var|--dump var] <filename>

Process Groups Index:
Group: temperature
Process ID: 0
Time Name:
Time: 1
Offset in File: 0

Vars Index:

Var (Group) [ID]: /NX (temperature) [1]
Datatype: integer
Vars Characteristics: 20

Offset(46) Value(10)

Var (Group) [ID]: /size (temperature) [2]
Datatype: integer

59

Vars Characteristics: 20
Offset(77) Value(20)

Var (Group) [ID]: /rank (temperature) [3]
Datatype: integer
Vars Characteristics: 20
Offset(110) Value(0)

Var (Group) [ID]: /temperature (temperature) [4]
Datatype: double
Vars Characteristics: 20
Offset(143) Min(1.000000e-01) Max(9.100000e+00)
Dims (l:g:0): (1:20:0,10:10:0)

Attributes Index:

Attribute (Group) [ID]: /recorded-date (temperature) [5]
Datatype: string
Attribute Characteristics: 20
Offset(363) Value(Sep-19-2008)

Figure 22. bpdump utility

60

10 Converters

To make BP files compatible with the popular file formats, we provide a series of
converters to convert BP files to HDF5, NETCDF, or ASCII. As long as users give
the required schema via the configuration file, the different converter tools

currently in ADIOS have the features to translate intermediate BP files to the
expected HDF5, NetCDF, or ASCII formats.

10.1 bp2h5

This converter, as indicated by its name, can convert BP files into HDF5 files.
Therefore, the same postprocessing tools can be used to analyze or visualize the
converted HDF5 files, which have the same data schema as the original ones. The
converter can match the row-based or column-based memory layout for datasets
inside the file based on which language the source codes are written in. If the
XML file specifies global-bounds information, the individual sub-blocks of the
dataset from different process groups will be merged into one global the dataset
in HDF file.

10.2 bp2ncd

The bp2ncd converter is used to translate bp files into NetCDF files. In Chap. 5, we
describe the time-index as an attribute for adios-group. If the variable is time-
based, one of its dimensions needs to be specified by this time-index variable,
which is defined as an unlimited dimension in the file into which it is to be
converted. a NetCDF dimension has a name and a length. If the constant value is
declared as a dimension value, the dimension in NetCDF will be named
varname_n, in which varname is the name of the variable and n is the nth
dimension for that variable. To make the name for the dimension value more
meaningful, the users can also declare the dimension value as an attribute whose
name can be picked up by the converter and used as the dimension name.

Based on the given global bounds information in a BP file, the converter can also
reconstruct the individual pieces from each process group and create the global
space array in NetCDF. A final word about editing the XML file: the name string
can contain only letters, numbers or underscores (“_"). Therefore, the attribute or
variable name should conform to this rule.

10.3 bp2ascii

Sometimes, scientists want to extract one variable with all the time steps or want
to extract several variables at the same time steps and store the resulting data in
ASCII format. The BpZ2ascii converter tool allows users to accomplish those tasks.

BpZ2ascii bp_filename -v x1 ... xn [-¢/-r] -t m,n
-v - specify the variables need to be printed out in ASCII file

-c —print variable values for all the time steps in column

61

-r - print variable values for all the time steps in row

-t — print variable values for time step m to n, if not defined, all the time steps will
be printed out.

10.4 Parallel Converter Tools

Currently, all of the converters mentioned above can only sequentially parse bp
files. We will work on developing parallel versions of all of the converters for
improved performance. As a result, the extra conversion cost to translate bp into
the expected file format can be unnoticeable compared with the file transfer time.

62

11 Group read/write process

In ADIOS, we provide a python script, which takes a configuration file name as an
input argument and produces a series of preprocessing files corresponding to the
individual adios-group in the XML file. Depending on which language (C or
FORTRAN) is specified in XML, the python script either generates files
gwrite_groupname.ch and gread_groupname.ch for C or files with extension .th
for Fortran. These files contain the size calculation for the group and
automatically print adios_write calls for all the variables defined inside adios-
group. One need to use only the “#include filename.ch” statement in the
source code between the pair of adios_open and adios_close.

Users either type the following command line or incorporate it into a Makefile:

python gpp.py <config fname>

11.1 Gwrite/gread/read
Below are a few example of the mapping from var element to adios_write/read:

In adios-group “weather”, we have a variable declared in the following forms:

1) <var name="temperature” gwrite="t" gread="t_read” type="adios_double”
dimensions="NX"/>

When the python command is executed, two files are produced,
gwrite_weather.ch and gread_weather.ch. The gwrite_weather.ch command
contains

adios write (adios handle, “temperature”, t);
while gread_weather.ch contains

adios read (adios handle, “temperature”, t read).

2) <var name="temperature” gwrite="t” gread="t_read” type="adios_double”
dimensions="NX" read="no”/>

In this case, only the adios_write statement is generated in gwrite_weather.ch.
The adios_read statement is not generated because the value of attribute read is
set to “no”.

3) <var name="temperature” gread="t_read” type="adios_double”
dimensions="NX" />

adios write (adios handle, “temperature”, temperature)

adios read (adios handle, “temperature”, t read).

4) <var name="temperature” gwrite="t" type="adios_double” dimensions="NX"

/>

63

adios write (adios handle, “temperature”, t)

adios read (adios handle, “temperature”, temperature)

11.2 Add conditional expression

Sometimes, the adios_write routines are not perfectly written out one after
another. There might be some conditional expressions or loop statements. The
following example will show you how to address this type of issue via XML
editing.

<gwrite src="if (rank == 0) {"/>

<var name="temperature” gwrite="t" gread="t_read” type="adios_double”
dimensions="NX" read="no” />

<gwrite src="}"/>

Rerun the python command; the following statements will be generated in
gwrite_weather.ch,

if (mype==0) {
adios write (adios handle, “temperature”, t)

}

gread_weather.ch has same condition expression added.

11.3 Dependency in Makefile
Since we include the header files in the source, the users need to include the
header files as a part of dependency rules in the Makefile.

64

12 C Programming with ADIOS

This chapter focuses on how to integrate ADIOS into the users’ source code in C
and how to write into separate files or a shared file from multiple processes in the
same communication domain. These examples can be found in the source
distribution under the examples/C/manual directory.

In the following steps we will create programs that use ADIOS to write

- ametadata-rich BP file per process

- one large BP file with the arrays from all processes

- Nfiles from P processes, where N << P

- the data of all processes as one global array into one file
- aglobal-array over several timesteps into one file

The strength of the componentization of 1/O in ADIOS allows us to switch
between the first two modes by selecting a different transport method in a
configuration file and run the program without recompiling it.

12.1 Non-ADIOS Program

The starting programming example, shown in Figure 23, writes a double-
precision array t with size of NX into a separate file per process (the array is
uninitialized in the examples).

#include <stdio.h>

#include "mpi.h"

#include "adios.h"

int main (int argc, char ** argv)

{
char filename [256];
int rank;
int NX =10;
double t[NX];
FILE * fp;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
sprintf (filename, "restart_%5.5d.dat", rank);

fp = open (filename, "w");

fwrite (&NX, sizeof(int), 1, fp);

fwrite (t, sizeof(double), NX, fp);

fclose (fp);

MPI_Finalize ();
return 0;

65

Figure 23. Original program (examples/C/manual/1_nonadios_example.c).

$ mpirun -np 4 1 nonadios example

$ ls restart *

restart 00000.dat restart 0000l1.dat restart 00002.dat
restart 00003.dat

12.2 Construct an XML File

In the example above, the program is designed to write a file for each process.
There is a double-precision one-dimensional array called “t”. We also need to
declare and write all variables that are used for dimensions (i.e. NX in our
example). Therefore, our configuration file is constructed as shown in Figure 24.

/* config.xml*/
<?xml version="1.0"?>
<adios-config host-language="C">
<adios-group name="temperature" coordination-communicator="comm">
<var name="NX" type="integer" />
<var name="temperature” gwrite="t" type="double" dimensions="NX"/>
<attribute name="description" path="/temperature" type="string”
value="Temperature array" />
</adios-group>

<method group="temperature" method="POSIX" />
<buffer size-MB="1" allocate-time="now" />

</adios-config>

Figure 24. Example config.xml file

12.3 Generate .ch file (s)

The adios_group_size function and a set of adios_write functions can be
automatically generated in gwrite_temperature.ch file by using the following
python command:

gpep.py config.xml

The generated gwrite_temperature.ch file is shown in Figure 25.
/* gwrite_temperature.ch */

adios_groupsize = 4 \

+ 8 * (NX);

66

adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
adios_write (adios_handle, "NX", &NX);
adios_write (adios_handle, "temperature”, t);

12.4 POSIX transport method (P writers, P subfiles + 1 metadata file)

For our first program, we simply translate the program of Figure 23, so that all of
the I/0 operations are done with ADIOS routines. The POSIX method can be used
to write out separate files for each processor in Figure 26. The changes to the
original example are highlighted. We need to use an MPI communicator in
adios_open() because the subprocesses need to know the rank to create unique

Figure 25. Example gwrite_temperature.ch file

subfile names.

/*write Separate file for each process by using POSIX*/
#include <stdio.h>

#include "mpi.h"

#include "adios.h"

int main (int argc, char ** argv)

{

char filename [256];
int rank;

int NX =10;
double t[NX];

/* ADIOS variables declarations for matching gwrite_temperature.ch */
int adios_err;

uint64_t adios_groupsize, adios_totalsize;

int64_t adios_handle;

MPI_ Comm * comm = MPI_COMM_WORLD;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

sprintf (filename, "restart.bp");

adios_init ("config.xml");

adios_open (&adios_handle, "temperature”, filename, "w", &comm);
#include "gwrite_temperature.ch”

adios_close (adios_handle);

adios_finalize (rank);

MPI_Finalize ();

return 0;

67

Figure 26. Example adios program to write P files from P processors
(examples/C/manual/2_adios_write.c)

The POSIX method makes a directory to store all subfiles. As for the naming of the
directory, it appends “.dir” to the name the file, e.g., restartbp.dir. For each
subfile, it appends the rank of the process (according to the supplied
communicators) to the name of the file (here restart.bp), so for example process 2
will write a file restart.bp.dir/restart.bp.2. To facilitate reading of subfiles, the
method also generates a global metadata file (restart.bp) which tracks all the
variables in each subfile.

$ mpirun -np 4 2 adios write

S 1s restart.bp
restart.bp

restart.bp.dir:
restart.bp.0 restart.bp.l restart.bp.2 restart.bp.3

$ bpls -lad restart.bp.dir/restart.bp.2 -n 10

integer /NX scalar = 10
double /temperature {10} = 20 / 29
(0) 20 21 22 23 24 25 26 27 28 29
string /temperature/description attr = "Temperature array"

12.5 MPI-IO transport method (P writers, 1 file)

Based on the same group description in the configure file and the header file (.ch)
generated by python script, we can switch among different transport methods
without changing or recompiling the source code.

One entry change in the config.xml file can switch from POSIX to MPI:
<method group="temperature” method="MPI" />

The MPI communicator is passed as an argument of adios_open(). Because it is
defined as MPI_COMM_WORLD in the posix example already, the program does
not need to be modified or recompiled.

$ mpirun -np 4 2 adios write

68

S 1s restart.bp

restart.bp

S bpls -1 restart.bp

Group temperature:
integer /NX scalar = 10
double /temperature {10} = 0 / 39

There are several ways to verify the binary results. We can either choose bpdump
to display the content of the file or use one of the converters (bp2ncd, bp2h5, or
bpZ2ascii), to produce the user’s preferred file format (NetCDF, HDF5 or ASCI],
respectively) and use its dump utility to output the content in the standard
output. Bpls cannot list the individual arrays written by the processes because
the generic read API it uses does not support this (it can see only one of them as
the size of /temperature suggest in the listing above). It is suggested to use global
arrays (see example below) to present the data written by many processes as one
global array, which then can be listed and any slice of it can be read/dumped.

This example, however, can be used for checkpoint/restart files where the
application would only read in data from the same number of processes as it was
written (see next example). The transparent switch between the POSIX and MPI
methods allows the user choose the better performing method for a particular
system without changing the source code.

12.6 Reading data from the same number of processors

Now let’s move to examples of how to read the data from BP or other files.
Assuming that we still use the same configure file shown in Figure 24, the
following steps illustrate how to easily change the code and xml file to read a
variable.

1. add another variable adios_buf_size specifying the size for read.
2. call adios_open with “r” (read only) mode.

3. Insert #include “gread_temperature.ch”

/*Read in data on same number of processors */
#include <stdio.h>

#include "mpi.h"

#include "adios.h"

int main (int argc, char ** argv)

{
char filename [256];
int rank;
int NX =10;

double t[NX];

/* ADIOS variables declarations for matching gread_temperature.ch */

69

int adios_err;

uint64_t adios_groupsize, adios_totalsize, adios_buf size;
int64_t adios_handle;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

sprintf (filename, "restart.bp");

adios_init ("config.xml");

adios_open (&adios_handle, "temperature”, filename, "r", &comm);
#include "gread_temperature.ch”

adios_close (adios_handle);

adios_finalize (rank);

MPI_Finalize ();

return 0;

Figure 27. Read in data generated by 2_adios_write using gread_temperature.ch
(examples/C/manual/3_adios_read.c)

The gread_temperature.ch file generated by gpp.py is the following:

/* gread_temperature.ch */

adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
adios_buf size = 4;

adios_read (adios_handle, "NX", &NX, adios_buf_size);

adios_buf size = NX;

adios_read (adios_handle, "temperature”, t, adios_buf_size);

Figure 28. Example of a generated gread_temperature.ch file

12.7 Writing to Shared Files (P writers, N files)

As the number of processes increases to tens or hundreds of thousands, the
amount of files will increase by the same magnitude if we use the POSIX method
or a single shared file may be too large if we use the MPI method. In this example
we address a scenario in which multiple processes write to N files. In the
following example (Figure 29), we write out N files from P processes. This is
achieved by creating a separate communicator for N subsets of the processes
using MPI_Comm_split().

#include <stdio.h>

#include "mpi.h"

#include "adios.h"

int main (int argc, char ** argv)

70

char filename [256];

int rank, size;
int NX =10;
int N =3;

double t[NX];

/* ADIOS variables declarations for matching gwrite_temperature.ch */
int adios_err;

uint64_t adios_groupsize, adios_totalsize;

int64_t adios_handle;

MPI_Comm comm;

/*

int color, key;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

/* MPI_Comm_split partitions the world group into N disjointed subgroups,
* the processes are ranked in terms of the argument key
* anew communicator comm is returned for this specific grid configuration
*

/

color = rank % N;

key =rank / N;

MPI_Comm_split (MPI_COMM_WORLD, color, key, &comm);

/* every P/N processes write into the same file
* there are N files generated.
*
/
sprintf (filename, "restart_%>5.5d.bp", color);
adios_init ("config.xml");
adios_open (&adios_handle, "temperature”, filename, "w", &comm);
#include "gwrite_temperature.ch”
adios_close (adios_handle);
adios_finalize (rank);
MPI_Finalize ();
return 0;

Figure 29. Example ADIOS program writing N files from P processors (N)

The reconstructed MPI communicator comm is passed as an argument of the
adios_open() call. Therefore, in this example, each file is written by the processes
in the same communication domain.

71

There is no need to change the XML file in this case because we are still using the
MPI method.

12.8 Global Arrays

If each process writes out a sub-array that belongs to the same global space,
ADIOS provides the way to write out global information so the generic read API
can see a single global array (and also the HDF5 or NetCDF file when using our
converters). This example demonstrates how to write global arrays, where the
number of processes becomes a separate dimension. Each process is writing the
one dimensional temperature array of size NX and the result is a two dimensional
array of size PxNX. Figure 30 shows how to define a global array in the XML file.

<?xml version="1.0"?>
<adios-config host-language="C">
<adios-group name="temperature" coordination-communicator="comm">
<var name="NX" type="integer" />
<var name="size" type="integer" />
<var name="rank" type="integer" />
<global-bounds dimensions="size,NX" offsets="rank,0">
<var name="temperature" gwrite="t" type="double" dimensions="1,NX"/>
</global-bounds>
<attribute name="description" path="/temperature"
value="Global array written from 'size' processes" type="string" />
</adios-group>

<method group="temperature" method="MPI" />
<buffer size-MB="2" allocate-time="now" />

</adios-config>

Figure 30. Config.xml for a global array
(examples/C/global-array/adios_global.xml)

The variable is inserted into a <global-bounds>...</global-bounds> section. The
global array’s global dimension is defined by the variables size and NX, available
in all processes and all with the same value. The offset of a local array written by
a process is defined using the rank variable, which is different on every process.
The variable itself is defined as an 1xNX two dimensional array, although in the C
code it is still a one dimensional array.

The gwrite header file generated by gpp.py is the following:
/* gwrite_temperature.ch */
adios_groupsize = 4 \

+4\

72

+4\
+87* (1) * (NX);
adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
adios_write (adios_handle, "NX", &NX);
adios_write (adios_handle, "size", &size);
adios_write (adios_handle, "rank", &rank);
adios_write (adios_handle, "temperature”, t);

Figure 31. gwrite header file generated from config.xml

The program code is not very different from the one used in the above example. It
needs to have the size and rank variables in the code defined (see
examples/C/global-array/adios_global.c)

12.8.1 MPI-I10 transport method (P writers, 1 file)
$ mpirun -np 4 ./adios global

$ ls adios global.bp

adios_global.bp

$ bpls -latd adios global.bp -n 10

integer /NX scalar = 10

integer /rank scalar = 0

integer /size scalar = 4

double /temperature {4, 10y =0/ 39 / 19.5 /

11.5434 {MIN / MAX / AVG / STD DEV}

(0,0) 012345672829

(1,0) 10 11 12 13 14 15 16 17 18 19

(2,0) 20 21 22 23 24 25 26 27 28 29

(3,0) 30 31 32 33 34 35 36 37 38 39
string /temperature/description attr = "Global array written from 'size’
processes”

The bp2ncd utility can be used to convert the bp file to an NetCDF file:

$ bp2ncd adios global.bp
S ncdump adios _global.nc
netcdf adios global {
dimensions:

NX = 10 ;
size = 4 ;
rank = 1 ;
variables:
double temperature(size, NX) ;
temperature:description = "Global array written
from \'size\' processes" ;

data:

73

temperature =
o, 1, 2, 3, 4, 5, 6, 7, 8, 9,
0, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39 ;
}

12.8.2 POSIX transport method (P writers, P Subfiles + 1 Metadata file)

To list variables output from POSIX transport, user only needs to specify the
global metadata file (e.g., adios_global.bp) as a parameter to bpls, not each
individual files (e.g., adios_global.bp.dir/adios_global.bp.0). The output of the
POSIX and the MPI methods are equivalent from reading point of view.

$ mpirun -np 4 ./adios global
$ ls adios global.bp
adios_global.bp

$ bpls -latd adios global.bp -n 10

integer /NX scalar = 10

integer /rank scalar = 0

integer /size scalar = 4

double /temperature {4, 10} =0 / 39 / 19.5 /

11.5434 {MIN / MAX / AVG / STD DEV}

(0,0) 012345¢6 7879

(1,0) 10 11 12 13 14 15 16 17 18 19
(2,0) 20 21 22 23 24 25 26 27 28 29
(3,0) 30 31 32 33 34 35 36 37 38 39

string /temperature/description attr = "Global array written from 'size'
processes”
The examples/C/global-array/adios_read_global.c program shows how to use the
generic read API to read in the global array from arbitrary number of processes.

12.9 Writing Time-Index into a Variable

The time-index allows the user to define a variable with an unlimited dimension,
along which the variable can grow in time. Let’s suppose the user wants to write
out temperature after a certain number of iterations. First, we add the “time-
index” attribute to the adios-group with an arbitrary name, e.g. “iter”. Next, we
find the (global) variable temperature in the adios-group and add “iter” as an
extra dimension for it; the record number for that variable will be stored every
time it gets written out. Note that we do not need to change the dimensions and
offsets in the global bounds, only the individual variable. Also note, that the time
dimension must be the slowest changing dimension, i.e. in C, the first one and in
Fortran, it must be the last one.

/* config.xml*/
<adios-config host-language="C">

74

<adios-group name="temperature" coordination-communicator="comm" time-
index="iter”>
<var name="NX" type="integer" />
<var name="size" type="integer" />
<var name="key" type="integer" />
<global-bounds dimensions="size,NX" offsets="key,0">
<var name="temperature" gwrite="t" type="double"
dimensions="iter,1,NX"/> (Note, for Fortran, “iter” needs to be
put in the end, i.e., dimension="NX,1,iter”)
</global-bounds>
<attribute name="description" path="/temperature"
value="Global array written from 'size' processes over several timesteps"
type="string" />
</adios-group>
<method group="temperature" method="MPI" />
<buffer size-MB="1" allocate-time="now" />
</adios-config>

Figure 32. Config.xml for a global array with time
(examples/C/global-array-time/adios_globaltime.xml)

The examples/C/global-array-time/adios_globaltime.c is similar to the previous
example adios_global.c code. The only difference is that it has an iteration loop
where each process writes out the data in each of its 13 iterations.

$ mpirun -np 4 ./adios read globaltime
$ bpls -la adios globaltime.bp
Group temperature:

integer /NX scalar = 10

integer /size scalar = 4

integer /rank scalar = 0

double /temperature {13, 4, 10} = 100 / 1339
/ 719.5 / 374.344 {MIN / MAX / AVG / STD DEV}

string /temperature/description attr = "Global array

written from 'size' processes over several timesteps"

A slice of two timesteps (6t and 7t%), dumped with bpls:

$ bpls adios globaltime.bp -s "5,0,0" -c "2,-1,-1" -n 10 -d
temperature
double /temperature {13, 4, 10}
slice (5:6, 0:3, 0:9)

) 600 601 602 603 604 605 606 607 608 609

5,0,0
(5,1,0) 610 611 612 613 614 615 616 617 618 619
5,2,0) 620 621 622 623 624 625 626 627 628 629

75

630 631 632 633 634 635 636 637 638 639
700 701 702 703 704 705 706 707 708 709
710 711 712 713 714 715 716 717 718 719
720 721 722 723 724 725 726 727 728 729
730 731 732 733 734 735 736 737 738 739

~
~

~
~

~
~

—_— — — — ~—

~

oy O)Y O O Ul
~

w NP O Ww
~

O O O O O

~

12.10 Reading statistics

In ADIOS, statistics like minimum, maximum, average and standard deviation can
be aggregated inexpensively. This section shows how these statistics can be
accessed from the BP file. The examples/C/stat/stat_write.c is similar to the
previous example adios_globaltime.c. It writes an additional variable “complex” of
type adios_double_complex along with “temperature.” It also has histogram
enabled for the variable “temperature.” Comparing it with the XML in the
previous example, stat.xml has the following additions:

/* statxml*/

<?xml version="1.0"?>
<adios-config host-language="C">
<adios-group name="temperature" coordination-communicator="comm"
time-index="iter">
<var name="NX" type="integer" />
<var name="rank" type="integer" />
<var name="size" type="integer" />
<global-bounds dimensions="size,NX" offsets="rank,0">
<var name="temperature" gwrite="t" type="double"
dimensions="iter,1,NX" />
<var name="complex" gwrite="c" type="double complex"
dimensions="iter,1,NX" />
</global-bounds>
</adios-group>

<method group="temperature" method="MPI" />
<buffer size-MB="5" allocate-time="now" />
<analysis adios-group="temperature" var="temperature"
break-points="0, 100, 1000, 10000" />
</adios-config>

Figure 33. Config.xml for creating histogram for an array variable
(examples/C/stat/stat.xml)

To include histogram calculation, only the XML file needs to be updated, and no
change is required in the C code. The examples/C/stat/gwrite_stat.ch requires an

76

additional 8 * (2) * NX to be added to adios_groupsize and an adios_write
(adios_handle, "complex", &c) to handle the complex numbers.

$ mpirun -np 2 ./stat write
[1]: adios stat.bp written successfully
[0]: adios stat.bp written successfully

The examples/C/stat/stat_read.c shows how to read back the statistics from the
bp file. First, the statistics need to be populated into an ADIOS_VARINFO object.
This is done with the following set of commands.

ADIOS FILE * f = adios fopen ("adios stat.bp", comm);
ADIOS GROUP * g = adios gopen (f, "temperature");
ADIOS VARINFO * v = adios _ing var (g, "temperature");

The object vV now contains all the statistical information for the variable
“temperature.” To access the histogram for temperature, we need to access the
ADIOS_HIST data structure inside the ADIOS_VARINFO object. The code below
prints the break points and the interval frequencies for the global histogram. For
‘n’ break points there are ‘n + 1’ intervals.

/* Break points */
for (j = 0; j < v->hist->num breaks; j++)
printf ("$1f ", v->hist->breaks[]j]);
/* Frequencies */
for (j = 0; j <= v->hist->num breaks; j++)
printf ("%d\t", v->hist->gfrequencies[j]);
adios_ free varinfo(v);

To access the statistics related to the variable “complex,” we need:
v = adios_ing var (g, "complex");

The code below describes how to print the minimum values of the magnitude,
real and imaginary part of complex data at each timestep. For complex variables
alone, all statistics need to be typecasted into a double format.

double ** Cmin = (double **) v->mins;
printf ("\nMagnitude Real Imaginary\n");
for (j = 0; v->ndim >= 0 && (7 < v=>dims[0]); J ++)

printf ("%1f %1f %1f\n",
Cmin[3j]1[0], Cmin[j][1], Cmin[J][2]);
adios_ free varinfo(v);

77

13 Developer Manual

13.1 Create New Transport Methods

One of ADIOS’s important features is the componentization of transport methods.
Users can switch among the typical methods that we support or even create their
own methods, which can be easily plugged into our library. The following
sections provide the procedures for adding the new transport method called
“abc” into the ADIOS library. In this version of ADIOS, all the source files are
located in /trunk/src/.

13.1.1 Add the new method macros in adios_transport_hooks.h

The first file users need to examine is adios_transport_hooks.h, which basically
defines all the transport methods and interface functions between detailed
transport implementation and user APIs. In the file, we first find the line that
defines the enumeration type Adios_I[O_methods_datatype add the declaration of
method ID ADIOS_METHOD_ABC, and, because we add a new method, update
total number of transport methods ADIOS_METHOD_COUNT from 9 to 10.

1. enum Adios_IO_methods datatype

enum ADIOS_IO_METHOD {
ADIOS_METHOD_UNKNOWN =-2

JADIOS_METHOD_NULL =-1
LADIOS_METHOD_MPI =0
LADIOS_METHOD_PHDF5 =8

€ ADIOS METHOD ABC =9
LADIOS_METHOD_COUNT =9 € ADIOS_METHOD_COUNT =10
%

2. Next, we need to declare the transport APIs for method “abc,” including
init/finalize, open/close, should_buffer, and read/write. Similar to the other
methods, we need to add

FORWARD_DECLARE (abc)

3. Then, we add the mapping of the string name “abc” of the new transport
method to the method ID - ADIOS_METHOD_ABC, which has been already defined
in enumeration type Adios_IO_methods_datatype. As the last parameter, “1” here
means the method requires communications, or “0” if not.

MATCH_STRING_TO_METHOD ("abc", ADIOS_METHOD_ABC, 1)

78

4. Lastly, we add the mapping of the string name needed in the initialization
functions to the method ID, which will be used by adios_transport_struct
variables defined in adios_internals.h.

ASSIGN_FNS (abc, ADIOS_METHOD_ABC)

13.1.2 Create adios_abc.c
In this section, we demonstrate how to implement different transport APIs for
method “abc.” In adios_abc.c, we need to implement at least 11 required routines:

1. “adios_abc_init” allocates the method_data field in adios_method_struct to the
user-defined transport data structure, such as adios_abc_data_struct, and
initializes this data structure. Before the function returns, the initialization status
can be set by statement “adios_abc_initialized = 1.”

2. “adios_abc_open” opens a file if there is only one processor writing to the file.
Otherwise, this function does nothing; instead, we use adios_abc_should_buffer to
coordinate the file open operations.

3. “adios_abc_should_buffer,” called by the “common_adios_group_size” function
in adios.c, needs to include coordination of open operations if multiple processes
are writing to the same file.

4. “adios_abc_write”, in the case of no buffering or overflow, writes data directly
to disk. Otherwise, it verifies whether the internally recorded memory pointer is
consistent with the vector variable’s address passed in the function parameter
and frees that block of memory if it is not needed any more.

5. “adios_abc_read” associates the internal data structure’s address to the variable
specified in the function parameter.

6. “adios_abc_close” simply closes the file if no buffering scheme is used. However,
in general, this function performs most of the actual disk writing/reading the
buffers to/from the file by one or more processors in the same communicator
domain and then close the file.

7. “adios_abc_finalize” resets the initialization status back to 0 if it has been set to
1 by adios_abc_init.

If you are developing asynchronous methods, the following functions need to be
implemented as well; otherwise you can leave them as empty implementation.

8. adios_abc_get_write_buffer,

9. “adios_abc_end_iteration“ is a tick counter for the 1/0 routines to time how fast
they are emptying the buffers.

10. “adios_abc_start_calculation” indicates that it is now an ideal time to do bulk
data transfers because the code will not be performing /0O for a while.

79

11. “adios_abc_stop_calculation“ indicates that bulk data transfers should cease
because the code is about to start communicating with other nodes.

The following is One of the most important things that needs to be noted:
fd->shared_buffer = adios_flag_no,

which means that the methods do not need a buffering scheme, such as PHDFS5,
and that data write out occurs immediately once adios_write returns.

If fd->shared_buffer = adios_flag_yes, the users can employ the self-defined
buffering scheme to improve 1/0 performance.

13.1.3 A walk-through example

Now let’s look at an example of adding an unbuffered POSIX method to ADIOS.
According to the steps described above, we first open the header file --
“adios_transport_hooks.h,” and add the following statements:

* enum ADIOS_IO_METHOD {

ADIOS_METHOD_UNKNOWN =-2
,LADIOS_METHOD_NULL =-1
,LADIOS_METHOD_MPI =0

,ADIOS_METHOD_PROVENANCE =8

// method ID for binary transport method
,ADIOS_METHOD_POSIX_ASCII_NB =9
// total method number
,ADIOS_METHOD_COUNT =10

%
* FORWARD_DECLARE (posix_ascii_nb);

* MATCH_STRING_TO_METHOD ("posix_ascii_nb"
, ADIOS_METHOD_ POSIX_ASCII_NB, 0)

* ASSIGN_FNS (binary, ADIOS_METHOD_POSIX_ASCII_NB)

Next, we must create adios_posix_ascii_nb,c, which defines all the required
routines listed in Sect. 12.1.2 The blue highlights below mark out the data
structures and required functions that developers need to implement in the
source code.

static int adios_posix_ascii_nb_initialized = 0;
struct adios_POSIX_ASCII_UNBUFFERED_data_struct

{

80

FILE *f;
uint64_t file_size;

b

void adios_posix_ascii_nb _init (const char *parameters
, struct adios_method_struct * method)

{

struct adios_POSIX_ASCII_UNBUFFERED_data_struct * md;

if (fadios_posix_ascii_nb_initialized)

{

adios_posix_ascii_nb_initialized = 1;
}
method->method_data = malloc (
sizeof(struct adios_POSIX_ASCII_UNBUFFERED_data_struct)
);
md = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)
method->method_data;
md->f = 0;
md->file_size = 0;

}

int adios_posix_ascii_nb _open (struct adios_file_struct * fd
, struct adios_method_struct * method)
{
char * name;
struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;
struct stat s;
p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)
method->method_data;
name = malloc (strlen (method->base_path) + strlen (fd->name) + 1);
sprintf (name, "%s%s", method->base_path, fd->name);
if (stat (name, &s) == 0)
p->file_size = s.st_size;
switch (fd->mode)

{

case adios_mode_read:
{
p->f = fopen (name, "r");
if (p->f<=0)
{
fprintf (stderr, "ADIOS POSIX ASCII UNBUFFERED: "
"file not found: %s\n", fd->name);
free (name);
return 0;

}
break;

}

case adios_mode_write:

{

p->f = fopen (name, "w");

81

if (p->f <= 0)
{
fprintf (stderr, "adios_posix_ascii_nb_open "
"failed for base_path %s, name %s\n"
,method->base_path, fd->name
);
free (name);
return 0;
}
break;
}
case adios_mode_append:
{
int old_file = 1;
p->f = fopen (name, "a");
if (p->f <= 0)
{
fprintf (stderr, "adios_posix_ascii_nb_open"
" failed for base_path %s, name %s\n"
,method->base_path, fd->name
);
free (name);
return 0;
}
break;
}
default:
{
fprintf (stderr, "Unknown file mode: %d\n", fd->mode);
free (name);
return 0;
}
)

free (name);
return 0;

}

enum ADIOS_FLAG adios_posix_ascii_nb_should_buffer
(struct adios_file_struct * fd
,struct adios_method_struct * method
,void * comm)
{
//in this case, we don’t use shared_buffer
return adios_flag_no;

}

void adios_posix_ascii_nb_write (struct adios_file_struct * fd
,struct adios_var_struct * v
,void * data
,struct adios_method_struct * method)

82

{

struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;
p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)
method->method_data;
if (Iv->dimensions) {
switch (v->type)
{
case adios_byte:
case adios_unsigned_byte:
fprintf (p->f,"%c\n", *((char *)data));
break;
case adios_short:
case adios_integer:
case adios_unsigned_short:
case adios_unsigned_integer:
fprintf (p->f,"%d\n", *((int *)data));
break;
case adios_real:
case adios_double:
case adios_long_double:
fprintf (p->f,"%f\n", *((double *)data));
break;
case adios_string:
fprintf (p->f,"%s\n", (char *)data);
break;
case adios_complex:
fprintf (p->f,"%f+%fi\n", *((float *)data),*((float *)(data+4)));
break;
case adios_double_complex:
fprintf (p->f,"%f+%fi\n", *((double *)data),*((double *)(data+8)));
break;
default:
break;
}
}
else
{
uint64_t j;
int element_size = adios_get_type_size (v->type, v->data);
printf("element_size: %d\n",element_size);
uint64_t var_size = adios_get_var_size (v, fd->group, v->data)/element_size;
switch (v->type)
{
case adios_byte:
case adios_unsigned_byte:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%c ", *((char *)(data+j)));
printf("\n");
break;
case adios_short:

83

case adios_integer:
case adios_unsigned_short:
case adios_unsigned_integer:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%d ", *((int *)(data+element_size*j)));
printf("\n");
break;
case adios_real:
case adios_double:
case adios_long_double:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%f ", * ((double *)(data+element_size*j)));
printf("\n");
break;
case adios_string:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%s ", (char *)data);
printf("\n");
break;
case adios_complex:
for (j = 0;j < var_size; j++)
fprintf (p->f, "%f+%fi ", *((float *)(data+element_size*j))
J((float *)(data+4+element_size*j))
)
printf("\n");
break;
case adios_double_complex:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%f+%fi ", *((double *)(data+element_size*j))
J¥((double *)(data+element_size*j+8)));
printf("\n");
break;
default:
break;

}
}
}

void adios_posix_ascii_nb_get_write_buffer
(struct adios_file_struct * fd
,struct adios_var_struct * v
,uint64_t * size
,void ** buffer
,struct adios_method_struct * method)
{
*buffer = 0;
}

void adios_posix_ascii_nb_read (struct adios_file_struct * fd
,struct adios_var_struct * v, void * buffer

84

,uint64_t buffer_size
,struct adios_method_struct * method)

{

v->data = buffer;
v->data_size = buffer_size;

}

int adios_posix_ascii_nb_close (struct adios_file_struct * fd
, struct adios_method_struct * method)

{
struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;

p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)
method->method_data;
if (p->f <= 0)
{
fclose (p->f);

}
p->f=0;
p->file_size = 0;

}

void adios_posix_ascii_nb_finalize (int mype, struct adios_method_struct * method)

{
if (adios_posix_ascii_nb_initialized)
adios_posix_ascii_nb_initialized = 0;

The binary transport method blocks methods for simplicity. Therefore, no special
implementation for the three functions below is necessary and their function
bodies can be left empty:

adios_posix_ascii_nb_end_iteration (struct adios_method_struct * method) {}
adios_posix_ascii_nb_start_calculation (struct adios_method_struct * method) {}
adios posix_ascii_nb stop_calculation (struct adios_method_struct * method) {}

Above, we have implemented the POSIX_ASCII_NB transport method. When users
specify POSIX_ASCII_NB method in xml file, the users’ applications will generate
ASCII files by using common ADIOS APIs. However, in order to achieve better I/0
performance, a buffering scheme needs to be included into this example.

13.2 Profiling the Application and ADIOS
There are two ways to get profiling information of ADIOS I/0O operations. One
way is for the user to explicitly insert a set of profiling API calls around ADIOS API

calls in the source code. The other way is to link the user code with a renamed
ADIOS library and an ADIOS API wrapper library.

85

13.2.1 Use profiling API in source code

The profiling library called libadios_timing.a implements a set of profiling API
calls. The user can use these API calls to wrap the ADIOS API calls in the source
code to get profiling information.

The adios-timing.h header file contains the declarations of those profiling
functions.

/*
* initialize profiling
*

* Fortran interface
*/

int init_prof_all_(char *prof_file_name, int prof_file_name_size);

/*
* record open start time for specified group
*k

* Fortran interface

*/

void open_start_for_group_(int64_t *gp_prof_handle, char *group_name, int
*cycle, int *gp_name_size);

/*
* record open end time for specified group
*k

* Fortran interface
*/
void open_end_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* record write start time for specified group
*k

* Fortran interface
*/

void write_start_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* record write end time for specified group
*k

* Fortran interface

*/

void write_end_for_group_(int64_t *gp_prof_handle, int *cycle);
/*

* record close start time for specified group

86

E'3

* Fortran interface
*/

void close_start_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* record close end time for specified group
*k

* Fortran interface
*/
void close_end_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* Report timing info for all groups
*k

* Fortran interface
*/

int finalize_prof_all_();

/*
* record start time of a simulation cycle
*

* Fortran interface
*/

void cycle_start_(int *cycle);

/*
* record end time of a simulation cycle
*

* Fortran interface
*/

void cycle_end_(int *cycle);

An example of using these functions is given below.

I'initialization ADIOS
CALL adios_init ("config.xml"//char(0))

l'initialize profiling library; the parameter specifies the file where profiling

information is written
CALL init_prof_all("log"//char(0))

CALL MPI_Barrier(toroidal_comm, error)

87

I record start time of open

I group_prof_handle is an OUT parameter holding the handle for the group
‘output3d.0’

l'istep is iteration no.

CALL open_start_for_group(group_prof_handle, "output3d.0"//char(0),istep)
CALL adios_open(adios_handle, "output3d.0"//char(0), “w”//char(0))

' record end time of open
CALL open_end_for_group(group_prof_handle,istep)

I record start time of write
CALL write_start_for_group(group_prof_handle,istep)

#include "gwrite_output3d.0.fh"

! record end time of write
CALL write_end_for_group(group_prof_handle,istep)

I record start time of close
CALL cose_start_for_group(group_prof_handle,istep)

CALL adios_close(adios_handle,adios_err)

'record end time of close

CALL close_end_for_group(group_prof_handle,istep)

CALL adios_finalize (myid)

I finalize; profiling information are gathered and min/max/mean/var are
calculated for each 10 dump

CALL finalize_prof()

CALL MPI_FINALIZE(error)

)

When the code is run, profiling information will be saved to the file ”./log’
(specified in init_prof_all ()). Below is an example.

Fri Aug 22 15:42:04 EDT 2008
1/0 Timing results

Operations : min max mean var

cycle no 3

io count 0

Open : 0.107671 0.108245 0.108032 0.000124

Open start : 1219434228.866144 1219434230.775268 1219434229.748614 0.588501
Openend : 1219434228.974225 1219434230.883335 1219434229.856646 0.588486

88

Write 0.000170 0.000190 0.000179 0.000005
Write start : 1219434228.974226 1219434230.883336 1219434229.856647 0.588486

Write end : 1219434228.974405 1219434230.883514 1219434229.856826 0.588484
Close 0.001608 0.001743 0.001656 0.000036

Close start: 1219434228.974405 1219434230.883514 1219434229.856826 0.588484
Close end : 1219434228.976040 1219434230.885211 1219434229.858482 0.588489
Total 0.109484 0.110049 0.109868 0.000137

cycle no 6

io count 1

Open : 0.000007 0.000011 0.000009 0.000001

Open start : 1219434240.098444 1219434242.007951 1219434240.981075 0.588556
Openend : 1219434240.098452 1219434242.007962 1219434240.981083 0.588556
Write 0.000175 0.000196 0.000180 0.000004

Write start : 1219434240.098452 1219434242.007962 1219434240.981083 0.588557
Write end : 1219434240.098631 1219434242.008158 1219434240.981264 0.588558
Close 0.000947 0.003603 0.001234 0.000466

Close start: 1219434240.098631 1219434242.008158 1219434240.981264 0.588558
Close end : 1219434240.099665 1219434242.009620 1219434240.982498 0.588447
Total 0.001132 0.003789 0.001423 0.000466

The script “post_script.sh” extracts “open time”, “write time”, “close time”, and
“total time” from the raw profiling results and saves them in separate files: open,
write, close, and total, respectively.

To compile the code, one should link the code with the -ladios_timing -ladios
option.

13.2.2 Use wrapper library
Another way to do profiling is to link the source code with a renamed ADIOS
library and a wrapper library.

The renamed ADIOS library implements “real” ADIOS routines, but all ADIOS
public functions are renamed with a prefix “P”. For example, adios_open() is
renamed as Padios_open(). The routine for parsing config.xml file is also changed
to parse extra flags in config.xml file to turn profiling on or off.

The wrapper library implements all adios pubic functions (e.g., adios_open,
adios_write, adios_close) within each function. It calls the “real” function
(Padios_xxx()) and measure the start and end time of the function call.

There is an example wrapper library called libadios_profiling.a. Developers can
implement their own wrapper library to customize the profiling.

To use the wrapper library, the user code should be linked with -ladios_profiling
-ladios. the wrapper library should precede the “real” ADIOS library. There is no
need to put additional profiling API calls in the source code. The user can turn
profiling on or off for each ADIOS group by setting a flag in the config.xml file.

<adios-group name="restart.model" profiling="yes|no">

</adios-group>

89

14 Appendix

14.1 Datatypes used in the ADIOS XML file

size
1 byte, interger*1

2 short, integer*2

Signed type Unsigned type

unsigned byte, unsigned integer*1

unsigned short, unsigned integer*2

4 integer, integer*4, real, real*4, float unsigned integer, unsigned integer*4

8 long, integer*8, real*8, double, long float, complex, complex*8

16 real*16, long double, double complex, complex*16

string

14.2 ADIOS APIs List

Function

Purpose

adios_init

Load the XML configuration file creating
internal representations of the various data
types and defining the methods used for
writing.

adios_finalize

Cleanup anything remaining before exiting
the code

adios_open Prepare a data type for subsequent calls to
write data using the io_handle. Mode is one
of “r” (read), “w” (write) and “a” (append).

adios_close Commit all the write to disk, close the file

and release adios file handle

adios_group_size

Passing the required buffer size to the
transport layer and returned the total size
back to the source code

adios_write Submit a data element for writing. This does
NOT actually perform the write in buffered
mode. In the overflow case, this call writes to
buffer directly.

adios_read Submit a buffer space (var) for reading a data

element into. This does NOT actually
perform the read. Actual population of the
buffer space will happen on the call to
adios_close

adios_set_path

Set the HDF5-style path for all variables in a
adios-group. This will reset whatever is

90

specified in the XML file.

adios_set_path_var

Set the HDF-5-style path for the specified
var in the group. This will reset whatever is
specified in the XML file.

adios_get_write_buffer

For the given field, get a buffer that will be
used at the transport level for it of the given
size. If size == 0, then auto calculate the
size based on what is known from the
datatype in the XML file and any provided
additional elements (such as array dimension
elements). To return this buffer, just do a
normal call to adios_write using the same
io_handle, field_name, and the returned
buffer.

adios_start_calculation

An indicator that it is now an ideal time to do
bulk data transfers as the code will not be
performing 10 for a while.

adios_end_ calculation

An indicator that it is no longer a good time
to do bulk data transfers as the code is
about to start doing communication with
other nodes causing possible conflicts

adios_end_iteration

A tick counter for the IO routines to time
how fast they are emptying the buffers.

14.3 An Example on Writing Sub-blocks using No-XML APIs

This example illustrates both the use of sub blocks in writing, and the usage of the
ADIOS non-xml API's. This example will write out two sub blocks of the variable
temperature and place these in the global array. Note: if local dimension/global
dimension/offset of a variable is defined with passing a number, instead of using
names of variable as shown in the following code snippet, for example,

adios_define_var (m_adios_group, "temperature"

,"", adios_double
,"100"’ "400", "O");

the sequence of calling adios_write needs to be exactly the same as that of calling
adios_define_var.

#include <stdio.h>
#include <string.h>
#include "mpi.h"
#include "adios.h"
#include "adios_types.h"

91

#ifdef DMALLOC
#include "dmalloc.h"
#endif

int main (int argc, char ** argv)
{
char filename [256];
int rank, size, i, block;
int NX =100, Global_bounds, Offsets;
double t[NX];
int sub_blocks = 3;
MPI_Comm comm = MPI_COMM_WORLD;

/* ADIOS variables declarations for matching gwrite_temperature.ch */
int adios_err;

uint64_t adios_groupsize, adios_totalsize;

int64_t adios_handle;

MPIL_Init (&argc, &argv);
MPI_Comm_rank (comm, &rank);
MPI_Comm_size (comm, &size);

Global_bounds = sub_blocks * NX * size;
strcpy (filename, "adios_global_no_xml.bp");

adios_init_noxml ();
adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, 10);

int64_t m_adios_group;
int64_t m_adios._file;
adios_declare_group (&m_adios_group, "restart", "iter", adios_flag_yes);
adios_select_method (m_adios_group, "MPI", "","");
adios_define_var (m_adios_group, "NX"
,"", adios_integer
,0,0,0);

adios_define_var (m_adios_group, "Global_bounds"

,"", adios_integer
,0,0,0);

for (i=0;i<sub_blocks;i++) {

adios_define_var (m_adios_group, "Offsets"

92

,"", adios_integer
,0,0,0);

adios_define_var (m_adios_group, "temperature"

,"", adios_double
,"NX", "Global_bounds", "Offsets");

¥

adios_open (&m_adios_file, "restart", filename, "w", &comm);
adios_groupsize = sub_blocks * (4 + 4 + 4 + NX * 8);

adios_group_size (m_adios_file, adios_groupsize, &adios_totalsize);
adios_write(m_adios_file, "NX", (void *) &NX);
adios_write(m_adios_file, "Global_bounds", (void *) &Global_bounds);
/* now we will write the data for each sub block */

for (block=0;block<sub_blocks;block++) {

Offsets = rank * sub_blocks * NX + block*NX;
adios_write(m_adios_file, "Offsets", (void *) &Offsets);

for (i=0; i< NX;i++)
t[i] = Offsets + i;

adios_write(m_adios_file, "temperature”, t);

}

adios_close (m_adios_file);
MPI_Barrier (comm);
adios_finalize (rank);

MPI_Finalize ();
return 0;

93

